Nº 1 (2023)

Capa

Edição completa

AI-enabled Systems

How to Measure Artificial Intelligence?

Kalyaev I.

Resumo

Currently, such concepts as “weak” and “strong” artificial intelligence are being frequently applied, but their generally accepted definitions are still missing. In this paper formal and informal suggestions about the essence of artificial intelligence are analyzed. An approach is proposed for quantitative measurement of the "power" of artificial intelligence, which makes it possible to compare various intelligent computer systems with each other.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):3-11
pages 3-11 views

An Approach to Organizing an Assistive Living Environment Using Artificial Intelligence

Zayats V., Orlov S., Chechnev S.

Resumo

The paper discusses the general theoretical foundations for the creation and functioning of ambient assisted living environment systems based on artificial intelligence. An ambient assisted living environment is a living space that includes equipment and technologies that provide support for impaired functions in people with disabilities. The creation of an ambient assisted living environment for persons with disabilities using artificial intelligence technologies makes it possible to provide ef- fective care for persons of this category by ensuring the autonomy of their life activity and personifying ongoing assistive and rehabilitation measures. Artificial intelligence systems collect and process data from sensors and transducers installed both on technical equipment (wheelchairs and other rehabilitation equipment) and on the patient's body. While processing these data taking into account the peculiar features of the patient, artificial intelligence systems form a program for creating an ambient assisted living environment for a particular person.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):12-18
pages 12-18 views

Decision Support Systems

Ontological Shell for Constructing Services for Forecasting and Assessing Patients' Conditions

Gribova V., Shalfeeva E.

Resumo

The paper describes a cloud shell for creating risk assessment systems and predicting the patient's condition based on information from an electronic medical record or other document. The shell integrates various methods and approaches for solving such problems, providing a means of declarative description of the rules for interpreting trained predictive models and knowledge about the dynamics of disease development to generate a detailed explanation. The shell allows you to "collect" in the service for a group of diseases or a section of medicine of interest those implementations of methods for assessing risks and predicting conditions and those knowledge bases about the pathogenesis of diseases that doctors are ready to trust.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):19-31
pages 19-31 views

Numerical Characteristics of Random Processes with Fuzzy States

Khatskevich V., Makhinova O.

Resumo

In this paper, we study continuous random processes with fuzzy states. The properties of their numerical characteristics – expectations and correlation functions, – corresponding to the properties of the characteristics of numerical random processes are established. A canonical representation of fuzzy-random processes is introduced and investigated. Triangular fuzzy-random processes are considered as an application.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):32-41
pages 32-41 views

Machine Learning, Neural Networks

Reducing Risks when Using Machine Learning in Diagnosis of Bronchopulmonary Diseases

Yusupova N., Bogdanov M., Smetanina O.

Resumo

The article is about issues of risk reduction when using software solutions based on machine learning methods for classifying chest x-rays on the example of chest x-ray in the diagnosis of bronchopulmonary diseases. A problem statement is formulated to reduce the risk of misdiagnosis by using of methods to counter malicious attacks. The machine learning methods of classification problem, the most dangerous attacks that reduce the recognition efficiency, and measures to counter attacks to reduce risks are identified based on experimental data. These methods were used when experimental studies. Defensive distillation, filtration, unlearning, pruning were used as countermeasures. The results obtained allow us to state that these methods can be used for other images as well. The results of experimental studies made it possible to formulate recommendations as rules, including combinations of recognition methods, attacks, and countermeasures to reduce the risk of misdiagnosis.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):42-54
pages 42-54 views

Methods for Neural Network Detection of Farm Animals in Dense Dynamic Groups on Images

Zhigalov А., Ivashchuk O., Biryukova T., Fedorov V.

Resumo

The development of non-invasive methods for monitoring the condition of farm animals is now a burning problem. The world is developing technologies for video surveillance of animals with subsequent image processing using neural networks. The purpose of this study is to develop methods for the detection (selection of individuals) of farm animals in images using pigs as an example. The main task is to perform the detection of "faces" of pigs in dense groups. To solve the task, a set of photographs of pigs from open sources was created, promising neural network architectures Faster R-CNN and YOLOv5 were selected, fine-tuning and training of neural networks were performed. The use of the YOLOv5 network enabled the detection accuracy mAP = 94.05%, which is significantly higher than the accuracy shown in similar works. This work is the first in an upcoming series of studies aimed at creating a software and hardware complex for automatic animal health monitoring on farms.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):55-66
pages 55-66 views

Neural Network Methods for Detecting Fires in Forests

Fralenko V.

Resumo

This work includes an analytical review, investigated, supplemented and tested actual neural network methods, algorithms and approaches for solving the problem of early detection of fires in forests using images and video streams from unmanned aerial vehicles. The proposed scheme for solving the problem is based on feature extraction and the use of machine learning for frame classification, selection of a rectangular region with target fire sources and accurate semantic segmentation of fires using convolutional neural networks. The performed modifications of the architectures of neural networks are described, which made it possible to improve the F1-measures achieved by them by 20%.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):67-77
pages 67-77 views

Analysis of Textual and Graphical Information

What is the Difference? Pragmatic Formalization of Meaning

Surov I.

Resumo

The agenda of the information age requests development of a metrologically sound theory of meaning, reflecting its real nature in human life. This work aims to meet the challenge. First, the paper analyzes premises of classical and applied semiotics, preventing its mathematical formalization. The most unfortunate of them is objectification of meaning, implying the possibility for its modeling based on set calculus. This approach is shown to contradict the pragmatic, creative and subjectively-contextual nature of natural cognition. After Bateson's famous dictum, the problem is solved by grounding meaning in the quantum of subjective behavior - the simplest binary decision. Fragments of the corresponding semantic structure are identified in basic models of emotion, cognitive semantics, functional semiotics, and quantum information science. Alignment of these fragments is shown to reproduce the qubit model of meaningful decision-making based on quantum theory. Integrative potential of this model allows interaction of psychology, cybernetics, behavioral modeling, artificial intelligence, and quantitative semiotics.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):78-89
pages 78-89 views

Multilevel Language Processing for Intelligent Retrieval and Text Mining

Smirnov I.

Resumo

The paper considers the problem of applying methods for multilevel natural language processing to information retrieval and text mining. The problem of using linguistic information about the structure of text and sentences obtained as a result of syntactic, semantic and discursive analysis of texts is investigated. The results of the development of methods for multi-level processing of the Russian language and their application in the tasks of semantic and question-answering search, information extraction from texts, text classification and psycholinguistic analysis of texts are presented.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):90-99
pages 90-99 views

Synthetic Datasets: Opportunities for Development оf Medical Artificial Intelligence Products

Shamaev D., Zayats V., Orlov S., Shirinyan A.

Resumo

Currently, intelligent solutions and artificial intelligence products are being intensively developed for various areas of life, including healthcare. Process of creating and implementing medical AI products is a time-consuming and costly process. The authors of the article consider the potential possibility of accelerating the development and implementation of medical AI products, primarily due to a new solution - the synthetic datasets. The key factors associated with the training datasets collecting are analyzed, including synthetic ones that shorten the development time and improve the quality of products AI based technology.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2023;(1):100-107
pages 100-107 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».