Ontological Shell for Constructing Services for Forecasting and Assessing Patients' Conditions
- Autores: Gribova V.V.1,2, Shalfeeva E.A.1,2
-
Afiliações:
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences
- Far Eastern Federal University
- Edição: Nº 1 (2023)
- Páginas: 19-31
- Seção: Decision Support Systems
- URL: https://journals.rcsi.science/2071-8594/article/view/269756
- DOI: https://doi.org/10.14357/20718594230103
- ID: 269756
Citar
Texto integral
Resumo
The paper describes a cloud shell for creating risk assessment systems and predicting the patient's condition based on information from an electronic medical record or other document. The shell integrates various methods and approaches for solving such problems, providing a means of declarative description of the rules for interpreting trained predictive models and knowledge about the dynamics of disease development to generate a detailed explanation. The shell allows you to "collect" in the service for a group of diseases or a section of medicine of interest those implementations of methods for assessing risks and predicting conditions and those knowledge bases about the pathogenesis of diseases that doctors are ready to trust.
Palavras-chave
Texto integral

Sobre autores
Valeria Gribova
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences; Far Eastern Federal University
Email: gribova@iacp.dvo.ru
Doctor of technical sciences, corresponding member of RAS. Research Deputy Director
Rússia, Vladivostok; VladivostokElena Shalfeeva
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences; Far Eastern Federal University
Autor responsável pela correspondência
Email: shalf@iacp.dvo.ru
Doctor of technical sciences, docent. Leading researcher
Vladivostok; VladivostokBibliografia
- Gusev A. 2020. Validatsiya i testirovanie prognosticheskikh modeley: prishlo vremya menyat' podkhody [Validation and testing of predictive models: it's time to change approaches]. // Electronic resource. URL: https://webiomed.ru/blog/validatsiia-i-testirovanieprognostcheskikh-modelei (accessed September 1, 2022).
- Adibi A., Sadatsafavi M. and Ioannidis J.P. 2020. Validation and Utility Testing of Clinical Prediction Models: Time to Change the Approach. JAMA. 324(3):235–236. doi: 10.1001/jama.2020.1230.
- Khalafyan, A.A., Karakhalis, L.Yu., Papova, N.S., Akinshina, V.A., and Koshkarov, A.A. 2018. Prognozirovaniye stadii rasprostraneniya zabolevaniya u patsiyentov, stradayushchikh adenomiozom, neyronnymi setyami [Predicting the stage of the spread of the disease in patients suffering from adenomyosis, neural networks]. Vrach i informatsionnye tekhnologii [Information technologies for the Physician]. 4: 67-74.
- Saigitov, R.T., Glezer, M.G., Sementsov, D.P., Kostomarova, I.V., and Malygina, N.A. 2006. Prognozirovaniye gospital'nykh iskhodov pri ostrom koronarnom sindrome [Prediction of hospital outcomes in acute coronary syndrome]. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2 (58): 42-49.
- Klimov, V., Evsyukov, A., Amelina, E., Ryabykh, S., and Simonovich, A. 2022. Predictors of Complications and Unfavorable Outcomes of Minimally Invasive Surgery Treatment in Elderly Patients With Degenerative Lumbar Spine Pathologies (Case Series). Frontiers in Surgery. 9:869345.
- Klimontov, V.V., Berikov, V.B., and Saik, O.V. 2021. Iskusstvennyy intellekt v diabetologii [Artificial intelligence in diabetology]. Sakharni Diabet [Diabetes mellitus]. 24(2):156-166.
- Nedelko, S.V. 2008. Adaptivnoye prognozirovaniye mnogomernogo vremennogo ryada [Adaptive forecasting of multivariate time series]. Tavricheskiy vestnik informatiki i matematiki [Tauride Journal of Computer Science Theory and Mathematics]. 2:104-110.
- Medeiros, F.A., Weinreb, R.N., Sample, P.A., Gomi, C.F., Bowd, C., Crowston, J.G., and Zangwill, L.M. 2005. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Archives of ophthalmology. 123(10), 1351-1360.
- Litvinenko, V.I. 1997. Modeli obrabotki nepolnoy i protivorechivoy informatsii v diagnosticheskikh sistemakh [Models for processing incomplete and contradictory information in diagnostic systems]. Cand. tech. sc. Diss. Kherson. 201 p.
- Tarasova, S.A. 2014. Prognozirovaniye v klinicheskoy meditsine [Forecasting in clinical medicine]. Innovatsii v nauke [Innovations in science]. 30 (2): 57–61.
- Metod keysov [Case study method]. // Electronic resource. URL: https://evolkov.net/case/case.study.html (accessed September 1, 2022).
- Eremeev, A.P., Varshavsky, P.R., and Kurylenko, I.E. 2012. Modelirovaniye vremennykh zavisimostey v intellektual'nykh sistemakh podderzhki prinyatiya resheniy na osnove pretsedentov [Modeling of time dependencies in intelligent decision support systems based on precedents]. Information technologies and knowledge. 3(6):279-294.
- Gribova, V.V., Petryaeva, M.V., Okun, D.B., Moskalenko, F.M., and Shalfeeva, E.A. 2019. Baza meditsinskoy terminologii i nablyudeniy [Base of medical terminology and observations]. Certificate of registration of the database RU 2019621179, 04.07.2019.
- Gribova, V.V., Kleshchev, A.S., Moskalenko, F.M., Timchenko, V.A., Fedorishchev, L.A., and Shalfeeva, E.A. 2018. Oblachnaya platforma IACPaaS dlya razrabotki obolochek intellektual'nykh servisov: sostoyaniye i perspektivy razvitiya [Cloud platform IACPaaS for the development of shells of intelligent services: state of the art and development prospects]. Programmnyye produkty i sistemy [Software products and systems]. 3(31): 527-536.
- Rybina, G.V., and Smirnov, V.V. 2005, Verifikatsiya baz znaniy v integrirovannykh ekspertnykh sistemakh [Verification of knowledge bases in integrated expert systems]. Novosti iskusstvennogo intellekta [News of artificial intelligence] 3:7-19.
Arquivos suplementares
