Numerical Characteristics of Random Processes with Fuzzy States

Capa

Citar

Texto integral

Resumo

In this paper, we study continuous random processes with fuzzy states. The properties of their numerical characteristics – expectations and correlation functions, – corresponding to the properties of the characteristics of numerical random processes are established. A canonical representation of fuzzy-random processes is introduced and investigated. Triangular fuzzy-random processes are considered as an application.

Sobre autores

Vladimir Khatskevich

Air Force Academy named after N.E. Zhukovsky and Yu. A. Gagarin

Autor responsável pela correspondência
Email: vlkhats@mail.ru

Doctor of technical sciences, professor. Professor

Rússia, Voronezh

Olga Makhinova

Air Force Academy named after N.E. Zhukovsky and Yu. A. Gagarin

Email: olga.maxinova@list.ru

Candidate of physical and mathematical sciences, docent. Associate professor

Rússia, Voronezh

Bibliografia

  1. Averkin A.N. Nechetkie mnozhestva v modelyah upravleniya i iskusstvennogo intellekta [Fuzzy sets in control and artificial intelligence models]. M.: Nauka [Moscow: Science]. 1986. 312 р.
  2. Buckley J.J. Eslami E., Feuring T. Fuzzy mathematics in economic and engineering. Heidelberg, New-York: Physica-Verl. 2002. 282 p.
  3. Piegat A. Nechetkoe modelirovanie i upravlenie [Fuzzy modeling and control]. M.: BINOM [Moscow: BINOM]. 2015. 798 р.
  4. Liang Cao, Deyin Yao, Hongyi Li, Wei Meng, Renquial Lu. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs // Fuzzy sets and systems. V. 452. Cjan. 2023. P. 1-22.
  5. Bronevich A.G., Lepsky A.E. Nechetkie modeli analiza dannyh i prinyatiya reshenij [Fuzzy models of data analysis and decision making]. M.: Izd. dom Vysshej shkoly ekonomiki [Moscow: Publishing house of the Higher School of Economics], 2022. 264 р.
  6. Kwakernaak H. Fuzzy random variables // I. Definitions and theorems. Information sciences. 1978. P. 1-29.
  7. Nahmias S. Fuzzy variables in a random environment. Advanced in Fuzzy Sets Theory // Amsterdam: NHPC, 1979. P. 165-180.
  8. Puri M. L., Ralesku D.A. Fuzzy random variables. Journal of Mathematical Analysis and Applications, 114. 1986. P. 409-422.
  9. Feng Y., Hu. L., Shu H. The variance and covariance of fuzzy random variables. Fuzzy Systems. 2001. 120. P. 487-497.
  10. Shvedov A.S. Otsenivanie srednikh i kovariatsiy nechetko-sluchaynykh velichin [Estimation of averages and covariances of fuzzy random variables] // Prikladnaya ekonometrika [Applied Econometrics]. 2016. Р. 121-138.
  11. Viertl R. Statistical methods for fuzy data. Chichester, Wiley. 2011. 268 p.
  12. .S. de la Rosa de Saa, M. Lubiano, B. Sinova, P. Filzmoser, M. A. Gil. Locationfree robust scale estimates for fuzzy data. IEEE Transactions on Fuzzy Systems. 2020. P. (99):1-1.
  13. Wentzel E.S., Ovcharov L.A. Teoriya sluchajnyh processov i ih inzhenernye prilozheniya [Theory of random processes and their engineering applications]. M.: Knorus [Moscow: Knorus]. 2016. 439 р.
  14. Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika: Uchebnoe posobie dlya vuzov [Probability theory and mathematical statistics: Textbook for universities]. M.: Vysshaya shkola [Moscow: High School]. 2003. 479 р.
  15. Demenkov N.P., Mikrin E.A., Mochalov I.A. Markovskie protsessy s nechetkimi sostoyaniyami. CHast' 1. Markovskie processy [Markov processes with fuzzy states. Part 1. Markov processes] // Informacionnye tekhnologii [Information technology]. 2020. V. 26. №6. Р. 323-334.
  16. Demenkov N.P., Mikrin E.A., Mochalov I.A. Markovskie protsessy s nechetkimi sostoyaniyami. CHast' 2. Markovskie processy [Markov processes with fuzzy states. Part 2. Markov processes] // Informacionnye tekhnologii [Information technology]. 2020. V. 26. №7. Р. 387-393.
  17. Yushun Tan, Ye Yuan, Xiangpeng Xie, Ben Niu. Dynamic event-triggered security control for networked T-S fuzzy system with non-uniform sampling // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 91-109.
  18. Yongchao Liu, Qidan Zhu, Xing Fan. Event-triggered adaptive fuzzy control for stochastic nonlinear time-delay systems // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 42-60.
  19. Weiwei Ma, Xin-Chun Jia, Fuwen Yang, Xiaobo Chi. Fuzzy dynamics output feedback control for nonlinear networked multirate sampled-data systems: An integral inequality method // Fuzzy sets and systems. V. 452. Cjan. 2023. P. 110-130.
  20. Hao Shen, Jiacheng Wu, Feng Li, Xiangyong Chen, Jing Wang. Fuzzy multi-objective fault-tolerant control for nonlinear Markov jump singularly perturbed system with persistent dwell-time switched transition probabilities // Fuzzy sets and systems. V. 452, Cjan. 2023. P. 131-148.
  21. Khatskevich Vladimir. On Modification of the Law of Large Numbers and Linear Regression of Fuzzy Random Variables // International Conference on Stochastic Methods ICSM-5 2020/ Recent Developments in Stochastic Methods and Applications. P. 76-91.
  22. Dubois D., Prade H. The mean value of fuzzy number // Fuzzy sets and systems. V. 24, Cdec.1987. P. 279-300.
  23. Yazenin A.V. Osnovnye ponyatiya teorii vozmozhnostej [Basic concepts of the theory of possibilities]. M.: Fizmatlit [Moscow: Physical education]. 2016. 144 р.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).