Integrating Challenge-Based-Learning, Project-Based-Learning, and Computer-Aided Technologies into Industrial Engineering Teaching: Towards a Sustainable Development Framework

Cover Page


Cite item

Full Text

Abstract

Introduction. Teaching industrial engineering in the second decade of the 21st century requires problem-solving and decision-making competencies oriented towards sustainable development. The growth of information metrics, the Internet of Things, virtual and augmented reality, and Artificial Intelligence bring more diverse, complex and imprecise challenges. This article aims to show a framework employing Challenge-based-learning, Project-based-learning and Computer-Aided technologies as dynamic resources supporting the comprehensive teaching of industrial engineers for industrial solutions oriented towards sustainable development.

Materials and Methods. Our research involved a systemic analysis of the framework variables, the stages, and the partial results of its application in three academic years research. We selected several case studies to evaluate the professional competencies related to Sustainable Development Goals of industrial engineering students, using active learning tools integrated with Computer-Aided technologies. These cases illustrated the acquisition of Sustainable Development Goals competencies. Two simultaneous Latin American scenarios were examined (Mexico and Cuba).

Results. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.

Discussion and Conclusion. The study of the theoretical and methodological components of teaching Industrial Engineering, emphasizing competencies, at two universities in Latin American countries revealed the need to understand Computer-Aided technologies as a complex process. The proposed framework considers Computer-Aided technologies per the typologies of selected competencies integrated into the curricular design, including Challenge-based-learning and Project-based-learning, oriented toward the Sustainable Development Goals. The authors’ conclusions contribute to the development of active learning methods in engineering, supported by the application of CAD/CAM/CAE tools and focused on the fulfillment of sustainable development objectives. The materials of the article will be useful for the teaching of Industrial Engineering from a digital transformation perspective, contextualized in sustainable development environments.

About the authors

Roberto Pérez-Rodríguez

University of Holguin

Author for correspondence.
Email: roberto.perez@uho.edu.cu
ORCID iD: 0000-0001-5741-5168
Scopus Author ID: 46461675300
ResearcherId: D-7023-2016

Research Professor, Ph.D.

Cuba, Holguín

Rafael Lorenzo-Martin

University of Holguin

Email: rlorenzo@uho.edu.cu
ORCID iD: 0000-0001-6852-5725

Research Professor, Ph.D.

Cuba, Holguín

Carlos A. Trinchet-Varela

University of Holguin

Email: carlos.trinchet@uho.edu.cu
ORCID iD: 0000-0001-5375-2968

Research Professor, Ph.D.

Cuba, Holguín

Rolando E. Simeón-Monet

University of Holguin

Email: simeon@uho.edu.cu
ORCID iD: 0000-0003-4561-0278
Scopus Author ID: 56492922600

Research Professor, Ph.D.

Cuba, Holguín

Jhonattan Miranda

Tecnologico de Monterrey

Email: jhonattan.miranda@tec.mx
ORCID iD: 0000-0002-4761-6027
Scopus Author ID: 55356463900

Research Professor, Ph.D.

Mexico, Nuevo León

Daniel Cortés

Tecnologico de Monterrey

Email: a01655708@itesm.mx
ORCID iD: 0000-0002-8692-8066
Scopus Author ID: 57203636953

Research Professor, Ph.D.

Russian Federation, Nuevo León

Arturo Molina

Tecnologico de Monterrey

Email: armolina@itesm.mx
ORCID iD: 0000-0001-5461-2879
Scopus Author ID: 7202086081

Vice-Rector of Research and Technology Transfer, Ph.D.

Mexico, Nuevo León

References

  1. Giesenbauer B., Müller-Christ G. University 4.0: Promoting the Transformation of Higher Education Institutions toward Sustainable Development. Sustainability. 2020;12(8):3371. doi: https://doi.org/10.3390/su12083371
  2. Sánchez-Santamaría J., Boroel-Cervantes B.I., López-Garrido F.M., Hortigüela-Alcalá D. Motivation and Evaluation in Education from the Sustainability Perspective: A Review of the Scientific Literature. Sustainability. 2021;13(7):4047. doi: https://doi.org/10.3390/su13074047
  3. Nhamo G., Togo M., Duke K., Sustainable Development Goals for Society. Cham: Springer; 2021. doi: https://doi.org/10.1007/978-3-030-70948-8
  4. Elfert M. Lifelong Learning in Sustainable Development Goal 4: What Does it Mean for UNESCO’s RightsBased Approach to Adult Learning and Education? International Review of Education. 2019;65(4):537‒556. doi: https://doi.org/10.1007/s11159-019-09788-z
  5. Mader C., Scott G., Abdul-Razak D. Effective Change Management, Governance and Policy for Sustainability Transformation in Higher Education. Sustainability Accounting, Management and Policy Journal. 2013;4(3):264–284. doi: https://doi.org/10.1108/SAMPJ-09-2013-0037
  6. Thomas I. Sustainability in Tertiary Curricula: What Is Stopping It Happening? International Journal of Sustainability in Higher Education. 2004;5(1):33–47. doi: https://doi.org/10.1108/14676370410517387
  7. Mosurović Ružičić M., Miletić M., Dobrota M. Does a National Innovation System Encourage Sustainability? Lessons from the Construction Industry in Serbia. Sustainability. 2021;13(7):3591. doi: https://doi.org/10.3390/su13073591
  8. Bauer M., Bormann I., Kummer B., Niedlich S., Rieckmann M. Sustainability Governance at Universities: Using a Governance Equalizer as a Research Heuristic. Higher Education Policy. 2018;31:491‒511. doi: https://doi.org/10.1057/s41307-018-0104-x
  9. Blanco-Portela N., Benayas J., Pertierra L.R., Lozano R. Towards the Integration of Sustainability in Higher Education Institutions: A Review of Drivers of and Barriers to Organisational Change and Their Comparison Against Those Found of Companies. Journal of Cleaner Production. 2017;166:563–578. doi: https://doi.org/10.1016/j.jclepro.2017.07.252
  10. Peer V., Stoeglehner G. Universities as Change Agents for Sustainability – Framing the Role of Knowledge Transfer and Generation in Regional Development Processes. Journal of Cleaner Production. 2013;44:85‒95. doi: https://doi.org/10.1016/j.jclepro.2012.12.003
  11. Ramirez-Mendoza R.A., Morales-Menendez R., Melchor-Martinez E.M., Iqbal H.M.N., Parra-Arroyo L., Vargas-Martínez A., et al. Incorporating the Sustainable Development Goals in Engineering Education. International Journal on Interactive Design and Manufacturing. 2020;14:739–745. doi: https://doi.org/10.1007/s12008-020-00661-0
  12. Mann L., Chang R., Chandrasekaran S., Coddington A., Daniel S., Cook E., et al. From Problem-Based Learning to Practice-Based Education: A Framework for Shaping Future Engineers. European Journal of Engineering Education. 2021;46(1):27–47. doi: https://doi.org/10.1080/03043797.2019.1708867
  13. Díaz M., Gormaz-Lobos D., Galarce-Miranda C., Valenzuela F., Rojas F., Sepulveda E., et al. Strengthening the Training of Engineers in Chilean Universities Through Practice Partnerships: STING Project. Procedia Computer Science. 2020;172:597–602. doi: https://doi.org/10.1016/j.procs.2020.05.076
  14. Colombo C.R., Alves A.C. Sustainability in Engineering Programs in a Portuguese Public University.
  15. Production. 2017;27(spe):e20162214. doi: https://doi.org/10.1590/0103-6513.221416
  16. Crespo B., Míguez-Álvarez C., Arce M.E., Cuevas M., Míguez J.L. The Sustainable Development Goals: An Experience on Higher Education. Sustainability. 2017;9(8):1353. doi: https://doi.org/10.3390/su9081353
  17. Sánchez-Carracedo F., López D. Innovation in Engineering Education for Sustainable Development –
  18. Introduction to a Special Issue. Sustainability. 2020;12(19):8132. doi: https://doi.org/10.3390/su12198132
  19. Membrillo-Hernández J., Ramírez-Cadena M.J., Martínez-Acosta M.J., Cruz-Gómez E., Muñoz-Díaz E., Elizalde H. Challenge-Based Learning: The Importance of World-Leading Companies as Training Partners. International Journal on Interactive Design and Manufacturing. 2019;13:1103–1113. doi: https://doi.org/10.1007/s12008-019-00569-4
  20. Félix-Herrán L.C., Rendon-Nava A.E., Nieto-Jalil J.M. Challenge-Based Learning: An I-Semester for Experiential Learning in Mechatronics Engineering. International Journal on Interactive Design and Manufacturing. 2019;13:1367–1383. doi: https://doi.org/10.1007/s12008-019-00602-6
  21. Portuguez Castro M., Gómez Zermeño M.G. Challenge Based Learning: Innovative Pedagogy for Sustainability through e-Learning in Higher Education. Sustainability. 2020;12(10):4063. doi: https://doi.org/10.3390/su12104063
  22. Gudoniene D., Paulauskaite-Taraseviciene A., Daunoriene A., Sukacke V. ACase Study on Emerging Learning Pathways in SDG-Focused Engineering Studies through Applying CBL. Sustainability. 2021;13(15):8495. doi: https://doi.org/10.3390/su13158495
  23. McLain M. Developing Perspectives on ‘the Demonstration’ as a Signature Pedagogy in Design and Technology Education. International Journal of Technology and Design Education. 2021;31:3–26. doi: https://doi.org/10.1007/s10798-019-09545-1
  24. Frank M., Lavy I., Elata D. Implementing the Project-Based Learning Approach in an Academic Engineering Course. International Journal of Technology and Design Education. 2003;13:273–2788. doi: https://doi.org/10.1023/A:1026192113732
  25. Doppelt Y. Assessing Creative Thinking in Design-Based Learning. International Journal of Technology and Design Education. 2009;19:55–65. doi: https://doi.org/10.1007/s10798-006-9008-y
  26. Chua K.J., Yang W.M., Leo H.L. Enhanced and Conventional Project-Based Learning in an Engineering Design Module. International Journal of Technology and Design Education. 2014;24(4):437–458. Available at: https://eric.ed.gov/?id=EJ1043446 (accessed 20.12.2021).
  27. Niiranen S. Supporting the Development of Students’ Technological Understanding in Craft and Technology Education via the Learning-by-Doing Approach. International Journal of Technology and Design Education. 2021;31:81–93. doi: https://doi.org/10.1007/s10798-019-09546-0
  28. Qu L., Chen Y., Rooij R., de-Jong P. Cultivating the Next Generation Designers: Group Work in Urban and Regional Design Education. International Journal of Technology and Design Education. 2020;30:899–918. doi: https://doi.org/10.1007/s10798-019-09540-6
  29. Cavalcante Koike C.M., Viana D.M., Vidal F.B. Mechanical Engineering, Computer Science and Art in Interdisciplinary Project-Based Learning Projects. International Journal of Mechanical Engineering Education. 2018;46(1):83–94. doi: https://doi.org/10.1177/0306419017715427
  30. García-Ros R., Pérez-González F., Cavas-Martínez F., Yomás J.M. Effects of Pre-College Variables and First-Year Engineering Students’ Experiences on Academic Achievement and Retention: A Structural Model. International Journal of Technology and Design Education. 2019;29:915–928. doi: https://doi.org/10.1007/s10798-018-9466-z
  31. Putra Z.A., Dewi M. The Application of Problem-Based Learning in Mechanical Engineering. In: IOP Conference Series: Materials Science and Engineering, Volume 306, 2nd International Conference on Innovation in Engineering and Vocational Education (25–26 October 2017, Manado, Indonesia). 2018;306:012140. doi: https://doi.org/10.1088/1757-899X/306/1/012140
  32. Uziak J., Kommula V.P. Application of Problem Based Learning in Mechanics of Machines Course. International Journal of Engineering Pedagogy. 2019;9(1):68‒83. doi: https://doi.org/10.3991/ijep.v9i1.9673
  33. Garikano X., Garmendia M., Manso A.P., Solaberrieta E. Strategic Knowledge-Based Approach for CAD Modelling Learning. International Journal of Technology and Design Education. 2019;29:947–959. doi: https://doi.org/10.1007/s10798-018-9472-1
  34. Sánchez-Romero J.L., Jimeno-Morenilla A., Pertegal-Felices M.L., Mora-Mora H. Design and Application of Project-Based Learning Methodologies for Small Groups within Computer Fundamentals Subjects. IEEE Access. 2019;7:12456‒12466.
  35. Berselli G., Bilancia P., Razzoli R. Project-Based Learning of CAD/CAE Tools for the Integrated Design of Automatic Machines. In: Advances on Mechanics, Design Engineering and Manufacturing II. Cham; Springer; 2019. p. 798‒809. doi: https://doi.org/10.1007/978-3-030-12346-8_78
  36. Fernandes F.A.O., Júnior N.F., Daleffe A., Fritzen D., Alves-de-Sousa R.J. Integrating CAD/CAE/CAM in Engineering Curricula: A Project-Based Learning Approach. Education Sciences. 2020;10(5):125. doi: https://doi.org/10.3390/educsci10050125
  37. Scherak L., Rieckmann M. Developing ESD Competences in Higher Education Institutions – Staff Training at the University of Vechta. Sustainability. 2020;12(24):10336. doi: https://doi.org/10.3390/su122410336
  38. Weng S.S., Liu Y., Dai J., Chuang Y.C. A Novel Improvement Strategy of Competency for Education for Sustainable Development (ESD) of University Teachers Based on Data Mining. 2020;12(7):2679. doi: https://doi.org/10.3390/su12072679
  39. Sistermans I.J. Integrating Competency-Based Education with a Case-Based or Problem-Based Learning Approach in Online Health Sciences. Asia Pacific Education Review. 2020;21:683–696. doi: https://doi. org/10.1007/s12564-020-09658-6
  40. Miranda J., Navarrete C., Noguez J., Molina-Espinosa J.M., Ramírez-Montoya M.S, Navarro-Tuch S.A., et al. The Core Components of Education 4.0 in Higher Education: Three Case Studies in Engineering Education. Computers & Electrical Engineering. 2021;93:107278. doi: https://doi.org/10.1016/j.compeleceng.2021.107278
  41. Molina A., Ponce P., Miranda J., Cortes D., Enabling Systems for Intelligent Manufacturing in Industry 4.0: Sensing, Smart and Sustainable Systems for the Design of S3 Products, Processes, Manufacturing Systems, and Enterprises. Springer Nature; 2021. doi: https://doi.org/10.1007/978-3-030-65547-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Pérez-Rodríguez R., Lorenzo-Martin R., Trinchet-Varela C.A., Simeón-Monet R.E., Miranda J., Cortés D., Molina A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Founded in 1996
Registry Entry: PI № FS 77-70142 of June 16, 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».