№ 6 (2023)

Мұқаба

Бүкіл шығарылым

Surveys

Distributed Intelligence of Multi-agent Systems. Part II: Collective Intelligence of Social Systems

Slovokhotov Y., Novikov D.

Аннотация

Part II of the multi-part survey is devoted to the features and empirical characteristics of distributed intelligence (DI) as the capability of a collective agent (social system) to perceive, process, and use new information in order to achieve its goals. The implementations of DI in human social systems are considered: the crowd wisdom of unstructured communities and the collective intelligence of small groups, organizational systems (OSs), and big systems (states, peoples, and civilizations in historical time). Unlike the swarm intelligence of social insects and animals, collective intelligence in human communities is built up of individuals capable of deep information processing and creative activity. The tight links between the DI of human organizational and social systems and individual human intelligence are emphasized. The increasing contribution of AI to modern collective intelligence is illustrated by flexible resource management in real time. The factors determining the effectiveness of the DI of a multi-agent system are identified as follows: (a) the cognitive capabilities of individuals, (b) the structure of interactions between them, (c) collective goal-setting, (d) external information recording, compression, and processing, and (e) creation of new “images” of the environment and oneself in it. A modular perception model of external influences by an intellectual agent is discussed.
Control Sciences. 2023;(6):3-21
pages 3-21 views

Control in Social and Economic Systems

Forming the Generations of New Technological Products as a Set Covering Problem

Barkalov S., Burkov V., Kurochka P., Serebryakova E.

Аннотация

The development of any enterprise implies improving its control mechanisms for the manager to make decisions based on the achievements of science rather than intuitive ideas of his (or her) personal experience. It is necessary to improve the model-building process in order to eliminate the coinciding peaks of resource consumption when working on multiple projects. For this purpose, the concept of a generation of new technological products can be adopted: a new product is formed from separate prototypes (operating models), which can serve to determine some features of the project under development. Naturally, it is unreasonable to include the entire model range in the generation of new technological products: one should select the minimum number of prototypes required. This problem belongs to the class of set covering problems: complete covering (when the selected prototypes must possess the entire set of properties possessed by the model series under development) or partial covering (when the selected prototypes must possess only some of these properties). Exact algorithms and approximate heuristic algorithms are presented to solve both problems.
Control Sciences. 2023;(6):22-31
pages 22-31 views

A Fuzzy Cold-Start Recommender System for Educational Trajectory Choice

Golovinskii P., Shatalova A.

Аннотация

Several approaches to choosing an educational trajectory are considered, and the advantages of using recommender systems are determined. The cold start problem of recommender systems is formulated and solved by creating a hybrid recommender system that combines a rule-based fuzzy expert system and a recommender system with fuzzy collaborative filtering. As one application, the general approach is implemented for choosing the field of study when entering a higher education institution. A modification of Klimov’s career guidance test is used as initial data. The rules for estimating the metrics and similarity of fuzzy triangular data are presented. The algorithms of a fuzzy expert system and a fuzzy recommender system with collaborative filtering are described in terms of the fuzzy representation accepted. The two approaches are combined by generating pseudo data using an expert system. This provides a solution of the cold start problem and yields a recommender system whose quality is gradually improved by substituting the values from real user queries into the database. The programs implementing these algorithms are tested to confirm the effectiveness of the fuzzy recommender system.
Control Sciences. 2023;(6):33-41
pages 33-41 views

Sustainable Development of Floodplain Territories of Regulated Rivers. Part I: Modeling Complex Structure Dynamics

Isaeva I., Kharitonov M., Vasilchenko A., Voronin A., Khoperskov A., Agafonnikova E.

Аннотация

This two-part study presents an approach to designing a sustainable management system for the environmental socio-economic systems (ESESs) of floodplain territories based on modeling their structure dynamics and hydrotechnical projects on their hydrological regime stabilization. The objective of management is to achieve and maintain the optimal stationary complex structure of a floodplain territory, which is characterized by the best design-achievable correspondence between the functional purpose of its fragments and the nature of their spring flooding. The approach rests on the complex structure dynamics model of a floodplain territory that combines variable hydrological and permanent functional properties. This dynamic model, supplemented by an expert model of the socio-economic potentials of the floodplain territory state, yields optimal parameters of hydrotechnical and socio-economic projects. Implementing the approach for a particular floodplain ESES involves optimization, expert assessment, geoinformation and numerical hydrodynamic modeling, high-performance computing, and the statistical analysis of natural observation data and the results of computational experiments. The retrospective, modern, and forecasted complex structures of the northern part of the Volga–Akhtuba floodplain are numerically built considering the spatial heterogeneity of the riverbed degradation effect of the Volga. These numerical results are used to develop an algorithm for finding the parameters of hydrotechnical projects to ensure an optimal sustainable complex structure of the floodplain territory. The algorithm and the results of its numerical implementation will be presented in part II of the study.
Control Sciences. 2023;(6):42-55
pages 42-55 views

A Rank-Expert Deviation Function to Classify Complex Objects

Korobov V., Tutygin A., Lokhov A.

Аннотация

This paper proposes a novel function for classifying environmental, social, and socio-environmental objects. It is based on the sum of rank deviations between a given object and a reference object considering the significance of the object’s characteristics (factors). Characteristics are estimated using weight coefficients, which are provided by expertise or another method. A verbal numerical scale is developed to assess the proximity of objects by the numerical value of the deviation function. As is demonstrated below, this function is not a metric in the geometric sense but a proximity function defined in multidimensional scaling theory. As illustrative examples, the values of the deviation function are calculated for two applications: an environmental problem of comparing the vulnerability of territories to accidental oil spills and an economic problem of choosing real estate objects to purchase. A recommended sequence with a set of procedures based on the deviation function is presented to solve these problems.
Control Sciences. 2023;(6):56-65
pages 56-65 views

Information Technology in Control

A Numerical Aggregation Method for Finite-State Machines Using Algebraic Operations

Menshikh V., Nikitenko V.

Аннотация

This paper considers the problem of synthesizing finite-state machines (FSMs) based on algebraic methods. The aggregation operations of FSMs are numerically implemented using symbolic matrices that describe their functioning. An algebra is defined for these matrices as follows: the carriers are matrix elements and special symbols, and the signature includes two operations serving to determine actions over these symbols. As a result, it becomes possible to define an algebra of symbolic matrices whose signature includes three operations. The classical operations over FSMs are represented in matrix form based on the algebra of symbolic matrices. Next, special operations over FSMs are constructed involving classical operations over them. Special operations are constructed considering the constraints and requirements of the subject area. A numerical example of FSM synthesis––the joint activity of two functional groups in an emergency zone––is provided.
Control Sciences. 2023;(6):66-75
pages 66-75 views

The Functional Voxel Method Applied to Solving a Linear First-Order Partial Differential Equation with Given Initial Conditions

Tolok A., Tolok N.

Аннотация

This paper considers an approach to solving the Cauchy problem for a linear first-order partial differential equation by the functional voxel (FV) method. The approach is based on the principles of differentiation and integration developed for functional voxel modeling (FVM) and yields local geometrical characteristics of the resulting function at linear approximation nodes. A classical approach to solving the Cauchy problem for a partial differential equation is presented on an example, and an FV-model is built as a reference for further comparison with the FVM results. An algorithm for solving differential equations by FVM means is described. The FVM results are visually and numerically compared with the accepted reference. Unlike numerical methods for solving such problems, which give the values of a function at approximation nodes, the FV-model contains local geometrical characteristics at the nodes (i.e., gradient components in the space increased by one dimension). This approach allows obtaining an implicit-form nodal local function as well as an explicit-form differential local function.
Control Sciences. 2023;(6):76-83
pages 76-83 views

Chronicle

16TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF LARGE-SCALE SYSTEM DEVELOPMENT (MLSD’2023)

Tsvirkun A., Dranko O., Stepanovskaya I.

Аннотация

The 16th International Conference on Management of Large-Scale Systems Development (MLSD’2023) was held on September 26–28, 2023. This annual event is organized by the Trapeznikov Institute of Control Sciences, the Russian Academy of Sciences, with the technical support of the IEEE Russia Section. MLSD conferences are intended to discuss research in the theory and applications of computer control and management for developing large-scale manufacturing, transport, energy, financial, and social systems. The MLSD’2023 program included one plenary session and 16 sections with 393 participants. The original proceedings of MLSD’2023 (20 plenary and 224 sectional papers) have been published in Russian and indexed by the RSCI. Of these, 155 papers have been extended and published electronically in English in IEEE Xplore (Scopus indexing).
Control Sciences. 2023;(6):84-90
pages 84-90 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».