A Fuzzy Cold-Start Recommender System for Educational Trajectory Choice
- 作者: Golovinskii P.A1, Shatalova A.O1
-
隶属关系:
- Voronezh State Technical University
- 期: 编号 6 (2023)
- 页面: 33-41
- 栏目: Control in Social and Economic Systems
- URL: https://journals.rcsi.science/1819-3161/article/view/292103
- DOI: https://doi.org/10.25728/pu.2023.6.3
- ID: 292103
如何引用文章
全文:
详细
作者简介
P. Golovinskii
Voronezh State Technical University
Email: golovinski@bk.ru
Voronezh, Russia
A. Shatalova
Voronezh State Technical University
Email: angelina.streltsova.93@mail.ru
Voronezh, Russia
参考
- Фальк К. Рекомендательные системы на практике. – М.: ДМК Пресс, 2020. – 448 с. [Falk, K. Practical Recommender Systems. – New York: Manning Publications, 2019. – 432 s.]
- Кутянин А.Р. Рекомендательные системы: обзор основных постановок и результатов // Интеллектуальные системы. Теория и приложения. – 2017. – Т. 21, № 4. – С.18–30. [Kutyanin, A.R. Recommender Systems: Overview of Main Statements and Results // Intelligent Systems. Theory and Applications. – 2017. – Vol. 21, no. 4. – P. 18–30. (In Russian)]
- Koren, Y., Bell, R., Volinsky, C. Matrix Factorization Techniques for Recommender Systems // Computer. – 2009. – Vol. 42, iss. 8. – P. 30–37.
- Noratiqah, M.A., Mohd, A.A., Nurul, F.R. Comparison between Content-Based and Collaborative Filtering Recommendation System for Movie Suggestions // AIP Conference Proceedings. – 2013. – doi: 10.1063/1.5054256.
- Ramlatchan, A., Yang, M., Liu, Q., et al. A Survey of Matrix Completion Methods for Recommendation Systems // Big Data Mining and Analytics. – 2018. – Vol. 1, no. 4. – P. 308–323.
- Sheng, B., Gengxin, S. Matrix Factorization Recommendation Algorithm Based on Multiple Social Relationships // Mathematical Problems in Engineering. – Vol. 2021. – Art. ID 6610645.
- Thakera, S., Nagori, V. Analysis of Fuzzification Process in Fuzzy Expert System // Procedia Computer Science. – 2018. – Vol. 132. – P. 1308–1316.
- Lucas, J.P., Laurent, A., Moreno, M.N., Teisseire, M. A Fuzzy Associative Classification Approach for Recommender Systems // International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. – 2012. – Vol. 20, no. 4. – P. 579–617.
- Zhang, Z., Lin, H., Liu, K., et al. A Hybrid Fuzzy-Based Personalized Recommender System for Telecom Products/Services // Information Sciences. – 2013. – Vol. 235. – P. 117–129.
- Rahman Siddiquee, M.M., Haider, N., Rahman, R.M. A Fuzzy Based Recommendation System with Collaborative Filtering // Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014). – Dhaka, 2014. – P. 1–8. – doi: 10.1109/SKIMA.2014.7083524
- Guangquan, L., Jiali, X., and Siyu, M. Learning Resource Recommendation Method Based on Fuzzy Logic // Journal of Engineering Science and Technology Review. – 2018. – Vol. 11, no. 4. – P. 146–153.
- Sundus, A., Usman, Q., Raheel, N. HCF-CRS: A Hybrid Content Based Fuzzy Conformal Recommender System for Providing Recommendations with Confidence // PLoS ONE. – 2018. – Vol. 13, no. 10. – Art. no. e0204849.
- Hamada, M., Ometere, A.L., Bridget, O.N., et al. A Fuzzy-Based Approach and Adaptive Genetic Algorithm in Multi-Criteria Recommender Systems // Advances in Science, Technology and Engineering Systems Journal. – 2019. – Vol. 4, no. 4. – P. 449–457.
- Calderon-Vilca, H., Chavez, N.M., Guimarey, J.M.R. Recommendation of Videogames with Fuzzy Logic // Proceedings of 27th Conference of Open Innovations Association (FRUCT). – Trento, 2020. – P. 27–37.
- Yang, Y., Zhang, Y. Collaborative Filtering Recommendation Model Based on Fuzzy Clustering Algorithm // AIP Conference Proceedings. – 2018. – Vol. 1967, iss. 1. – Art. no. 040050. – DOI: https://doi.org/10.1063/1.5039124.
- Lee, S. Fuzzy Clustering with Optimization for Collaborative Filtering-Based Recommender Systems // Journal of Ambient Intelligence and Humanized Computing. – 2022. – Vol. 13, no. 2. – P. 4189–4206.
- Comendador, B.E.V., Becbec, W.F.C., Guzman, J.R.P. Implementation of Fuzzy Logic Technique in a Decision Support Tool: Basis for Choosing Appropriate Career Path // International Journal of Machine Learning and Computing. – 2020. – Vol. 10, no. 2. – P. 339–345.
- Duan, L., Wang, W., Han, B. A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning // KSII Transactions on Internet and Information Systems. – 2021. – Vol. 15, no. 7. – P. 2399–2413.
- Hasanzadeh, S., Fakhrahmad, S., Taheri, M. A Fuzzy Approach to Review-Based Recommendation: Design and Optimization of a Fuzzy Classification Scheme Based on Implicit Features of Textual Reviews // Iranian Journal of Fuzzy Systems. – 2021. – Vol. 18, iss. 6. – P. 83–99.
- Cui, C., Li, J., Zang, Z. Measuring Product Similarity with Hesitant Fuzzy Set for Recommendation // Mathematics. – 2021. – Vol, 9, iss. 21. – doi: 10.3390/math9212657.
- Chen, J., Lu, Y., Shang, F., Wang, Y. A Fuzzy Matrix Factor Recommendation Method with Forgetting Function and User Features // Applied Soft Computing. – 2021. – Vol. 100. – Art. no. 106910.
- Yin, M., Liu, Y., Zhou, X., Sun, G. A Fuzzy Clustering Based Collaborative Filtering Algorithm for Time-aware POI Recommendation // Journal of Physics: Conference Series. – 2021. – Vol. 1746. – Art. no. 012037. – doi: 10.1088/1742-6596/1746/1/012037.
- Jin, B., Liu, D., Li, L. Research on Social Recommendation Algorithm Based on Fuzzy Subjective Trust // Connection Science. – 2022. – Vol. 34, no.1. – P. 1540–1555.
- Malandri, L., Porcel, C., Xing, F., et al. Soft Computing for Recommender Systems and Sentiment Analysis // Applied Soft Computing. – 2022. – Vol. 118, no. 3. – Art. no. 108246. – DOI: https://doi.org/10.1016/j.asoc.2021.108246.
- Xin, Y., Henan, B., Jianmin, N. et al. Coating Matching Recommendation Based on Improved Fuzzy Comprehensive Evaluation and Collaborative Filtering Algorithm // Scientific Reports. – 2021. – Vol. 11. – Art. no. 14035.
- Dai, B., Chen, R.-C., Zhu, S.-Z., Huang, C.-Y. A Fuzzy Recommendation System for Daily Water Intake // Advances in Mechanical Engineering. – 2016. – Vol. 8, no. 5. – DOI: https://doi.org/10.1016/j.eswa.2020.113738.
- Liu, Y., Eckert, C.M., Earl, C. A Review of Fuzzy AHP Methods for Decision-Making with Subjective Judgements // Expert Systems with Applications. – 2020. – Vol. 161. – Art. no. 113738.
- Akbar, M.A., Khan, A.A., Huang, Z. Multicriteria Decision Making Taxonomy of Code Recommendation System Challenges: A Fuzzy-AHP Analysis // Information Technology and Management. – 2023. – Vol. 24. – P. 115–131.
- Теория управления (дополнительные главы): Учебное пособие / Под ред. Д.А. Новикова. – М.: ЛЕНАНД, 2019. – 552 с. [Teoriya upravleniya (dopolnitel’nye glavy). Uchebnoye posobiye. Ed. by D.A. Novikov. – M.: LENAND, 2019. – 552 s. (In Russian)]
- Беляева К.А. Сервис «Индивидуальная траектория студента» в личном кабинете студента iStudent.urfu.ru. Руководство пользователя. – Екатеринбург: УРФУ, 2016. [Belyaeva, K.A. Service «Individual Trajectory of the Student» in the Personal Account of the Student iStudent.urfu.ru. User Guide. – Yekaterinburg: URFU, 2016. (In Russian)]
- Арапова Е.А., Крамаров С.О., Сахарова Л.В. Разработка концепции интеллектуальной платформы для реализации индивидуальной траектории обучения с учетом базового уровня знаний и психотипа обучающегося // Вестник кибернетики. – 2022. – № 1 (45). – С. 6–15. [Arapova, E.A., Kramarov, S.O., Sakharova, L.V. Concept Development of an Intelligent Platform Aimed at Implementing an Individual Learning Path According to the Student’s Basic Level of Knowledge and Psychological Type // Proceedings in Cybernetics. – 2022. – No. 1 (45). – P. 6–15. (In Russian)]
- Куприянов Р.Б., Агранат Д.Л., Сулейманов Р.С. Использование технологий искусственного интеллекта для выстраивания индивидуальных образовательных траекторий обучающихся // Вестник Российского университета дружбы народов. Серия: Информатизация образования. – 2021. – Т. 18, № 1. – С. 27–35. [Kupriyanov, R.B., Agranat, D.L., Suleimanov, R.S. The Use of Artificial Intelligence Technologies for Building Individual Educational Trajectories of Students // Bulletin of the Peoples' Friendship University of Russia. Series: Informatization of education. – 2021. – Vol. 18, no. 1. – P. 27–35. (In Russian)]
- Guseva, A.I., Kireev, V.S., Bochkarev, P.V., et al. Scientific and Educational Recommender Systems. Information Technologies in Education of the XXI Century (ITE-XXI) // AIP Conf. Proc. – 2017. – Vol. 1797, iss. 1. – P. 2–11.
- Estrada, J.E., Bernabe, G.G., Lopez, J.S., Potestades, J.A. Model Development in Assessing the Career Path of Senior High School Students in Philippine Setting // International Journal of Information and Education Technology. – 2018. – Vol. 8. – P. 459–461.
- Khorasani, E.S., Zhenge, Z., Champaign, J. A Markov Chain Collaborative Filtering Model for Course Enrollment Recommendations // Proceedings of 2016 IEEE International Conference on Big Data. – Washington, DC, 2016. – P. 3484–3490.
- Kamal, A., Naushad, B., Rafiq, H., Tahzeeb, S. Smart Career Guidance System // Proceedings of 4th International Conference on Computing & Information Sciences (ICCIS). – Karachi, 2021. – P. 58–61.
- Ilahi, R., Widiaty, I., Abdullah, A.G. Fuzzy System Application in Education // IOP Conf. Series: Materials Science and Engineering. – 2018. – Vol. 434. – Art. no. 012308. – doi: 10.1088/1757-899X/434/1/012308.
- Selva Rani, B. and Ananda Kumar, S. Recommendation System for under Graduate Students Using FSES-TOPSIS // The International Journal of Electrical Engineering & Education. – 2019. – DOI: https://doi.org/10.1177/0020720919879385.
- Benilda, E.V., Comendador, W.F., Becbec, C., John, R.P. de Guzman. Implementation of Fuzzy Logic Technique in a Decision Support Tool: Basis for Choosing Appropriate Career Path // International Journal of Machine Learning and Computing. – 2020. – Vol. 10, no. 2. – P. 339–345. – doi: 10.18178/ijmlc.2020.10.2.940.
- Natividad, M.C.B, Gerardo, B.D., Medina, R.P. A Fuzzy-Based Career Recommender System for Senior High School Students in K to 12 Education // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 482. – Art. no. 012025. – doi: 10.1088/1757-899x/482/1/012025.
- Qamhieh, M., Sammaneh, H., Demaidi, M.N. PCRS: Personalized Career-Path Recommender System for Engineering Students // IEEE Access. – 2020. – Vol. 8. – P. 214039–214049. – doi: 10.1109/ACCESS.2020.3040338.
- Hernandez, R., Atienza, R. Career Track Prediction Using Deep Learning Model Based on Discrete Series of Quantitative Classification // Applied Computer Science. – 2021. – Vol. 17, no. 4. – P. 55–74. – doi: 10.23743/acs-2021-29.
- Nghiem, T.L., Dinh, T.H., Nguyen, T.L. A Fuzzy Logic Approach to Career Orientation for Students: A Case Study in Human Resource Management // In: Global Changes and Sustainable Development in Asian Emerging Market Economies. Ed. By Nguyen, A.T., Hens, L. – Cham: Springer, 2022. – Vol. 1. – doi: 10.1007/978-3-030-81435-9_17.
- Климов Е.А. Психология профессионального самоопределения. – М.: «Академия», 2004. – 304 с. [Klimov, E.A. Psychology of Professional Self-determination. – M.: «Academy», 2004. – 304 p. (In Russian)]
- Pereira, A.L.V., Hruschka, E.R. Simultaneous Co-clustering and Learning to Address the Cold Start Problem in Recommender Systems // Knowledge-Based Systems. – 2015. – Vol. 82. – P. 11–19. – doi: 10.1016/j.knosys.2015.02.016
- Шаталова А.О., Головинский П.А. Нечеткая экспертная система оценки выбора профессии. Свидетельство о регистрации программы для ЭВМ № 2023662881 : заявл. 27.03.2023: зарег. 15.06.2023. [Shatalova, A.O., Golovinsky, P.A. Fuzzy Expert System for Assessing Career Choice. Certificate of registration of a computer program. № 2023662881: appl. 27.03.2023: reg. 15.06.2023. (In Russian)]
- Коротеев М.В., Терелянский П.В., Иванюк В.А. Арифметика нечетких чисел в обобщенно трапециевидной форме // Совр. матем. и ее приложения. – 2015. – P. 94–99. [Koroteev, M.V., Terelyansky, P.V., Ivanyuk, V.A. Arithmetic of Fuzzy Numbers in Generalized Trapezoidal Form // J. Math. Sci. – 2016. – Vol. 216. – P. 696–701.]
- Seresht, N.G., Fayek, A.R. Fuzzy Arithmetic Operations: Theory and Applications in Construction Engineering and Management: Theory and Applications // In: Fuzzy Hybrid Computing in Construction Engineering and Management. – Bingley: Emerald Publishing Limited, 2018. – P. 111–147. – doi: 10.1108/978-1-78743-868-220181003.
- Mahanta, J., Panda, S. Distance Measure for Pythagorean Fuzzy Sets with Varied Applications // Neural Computing and Application. – 2021. – No. 33. – P. 17161–17171.
补充文件
