Методы получения информации биомедицинского мониторинга уровня оксигенации и артериального давления с использованием встроенных сенсоров смартфонной техники
- Авторы: Егорчев А.А.1, Чикрин Д.Е.1, Фахрутдинов А.Ф.1, Шарипов М.Р.1, Бурнашев Р.А.1
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Выпуск: Том 24, № 3 (2024)
- Страницы: 423-431
- Раздел: Информатика
- URL: https://journals.rcsi.science/1816-9791/article/view/353381
- DOI: https://doi.org/10.18500/1816-9791-2024-24-3-423-431
- EDN: https://elibrary.ru/SWTABZ
- ID: 353381
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Антон Александрович Егорчев
Казанский (Приволжский) федеральный университет
ORCID iD: 0000-0001-8561-8616
Россия, 420008, г. Казань, ул. Кремлевская, д. 18
Дмитрий Евгеньевич Чикрин
Казанский (Приволжский) федеральный университет
ORCID iD: 0000-0003-1358-8184
Россия, 420008, г. Казань, ул. Кремлевская, д. 18
Адель Фердинандович Фахрутдинов
Казанский (Приволжский) федеральный университетРоссия, 420008, г. Казань, ул. Кремлевская, д. 18
Марсель Ривкатович Шарипов
Казанский (Приволжский) федеральный университетРоссия, 420008, г. Казань, ул. Кремлевская, д. 18
Рустам Арифович Бурнашев
Казанский (Приволжский) федеральный университет
ORCID iD: 0000-0002-1057-0328
ResearcherId: O-9736-2016
Россия, 420008, г. Казань, ул. Кремлевская, д. 18
Список литературы
- Vildjiounaite E., Kallio J., Kyllonen V., Nieminen M., Maattanen I., Lindholm M., Mantyjarvi J., Gimel’farb G. Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing, 2018, vol. 22, pp. 671–688. https://doi.org/10.1007/s00779-017-1108-z
- Simantiraki O., Giannakakis G., Pampouchidou A., Tsiknakis M. Stress detection from speech using spectral slope measurements. In: Oliver N., Serino S., Matic A., Cipresso P., Filipovic N., Gavrilovska L. (eds) Pervasive Computing Paradigms for Mental Health (FABULOUS 2016, MindCare 2016, IIOT 2015). Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 207. Cham, Springer, 2018, pp. 41–50. https://doi.org/10.1007/978-3-319-74935-8_5
- Pili U. Measurement of breathing rate with a smartphone magnetometer: An engaging classroom activity in physics and biology. Physics Education, 2019, vol. 54, iss. 6, art. 063001. https://doi.org/10.1088/1361-6552/ab393f
- Xu C., Yang Y., Gao W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter, 2020, vol. 2, iss. 6, pp. 1414–1445. https://doi.org/10.1016/j.matt.2020.03.020
- Abay T., Kyriacou P. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Journal of Clinical Monitoring and Computing, 2018, vol. 32, pp. 447–455. https://doi.org/10.1007/s10877-017-0030-2
- Kanva A., Sharma C., Deb S. Determination of SpO2 and heart-rate using smartphone camera. Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC). Calcutta, India, 2014, pp. 237–241. https://doi.org/10.1109/CIEC.2014.6959086
- Scully C., Lee J., Meyer J., Gorbach A., Granquist-Fraser D., Mendelson Y., Chon K. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, iss. 2, pp. 303–306. https://doi.org/10.1109/TBME.2011.2163157
- Carni D. L., Grimaldi D., Sciammarella P. F., Lamonaca F., Spagnuolo V. Setting-up of PPG scaling factors for SpO2% evaluation by smartphone. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Benevento, Italy, 2016, pp. 1–5. https://doi.org/10.1109/MeMeA.2016.7533775
- Cheng Q., Juen J., Schatz B. Using mobile phones to simulate pulse oximeters: Gait analysis predicts oxygen saturation. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Bioligy and Health Informatics, 2014, iss. 1, pp. 331–340. https://doi.org/10.1145/2649387.2649403
- Chandrasekaran V., Dantu R., Jonnada S., Thiyagaraja S., Subbu K. Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 2013, vol. 60, iss. 4, pp. 1080–1089. https://doi.org/10.1109/TBME.2012.2211078
- Pelegris P., Banitsas K., Orbach T., Marias K. A novel method to detect Heart Beat Rate using a mobile phone. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, 2010, pp. 5488–5491. https://doi.org/10.1109/IEMBS.2010.5626580
- Morsi I., Gawad Y. Z. A. E. Measurement of blood pressure and heart beat based on sensors and microcontrollers. Applied Mechanics and Materials, 2012, vol. 249–250, pp. 193–201. https://doi.org/10.4028/www.scientific.net/AMM.249-250.193
- Xing X., Sun M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomedical Optics Express, 2016, vol. 7, iss. 8, pp. 3007–3020. https://doi.org/10.1364/BOE.7.003007
- Slapnicar G., Mlakar N., Lustrek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors, 2019, vol. 19, iss. 15, art. 3420. https://doi.org/10.3390/s19153420
Дополнительные файлы



