Methods for obtaining information for biomedical monitoring of the level of oxygenation and blood pressure using built-in sensors of smartphone technology

Capa

Citar

Texto integral

Resumo

The article is devoted to the actual problem of non-invasive self-monitoring of oxygenation and blood pressure indicators by patients. The article provides an overview of the available promising approaches for monitoring the biomarkers under consideration. Also, it demonstrates the main problems associated with applying the approaches under consideration and those caused by the test sample itself.

Sobre autores

Anton Egorchev

Kazan (Volga region) Federal University

ORCID ID: 0000-0001-8561-8616
18 Kremlevskaya St., Kazan 420008, Russia

Dmitry Chiсkrin

Kazan (Volga region) Federal University

ORCID ID: 0000-0003-1358-8184
18 Kremlevskaya St., Kazan 420008, Russia

Adel Fakhrutdinov

Kazan (Volga region) Federal University

18 Kremlevskaya St., Kazan 420008, Russia

Marcel Sharipov

Kazan (Volga region) Federal University

18 Kremlevskaya St., Kazan 420008, Russia

Rustam Burnashev

Kazan (Volga region) Federal University

ORCID ID: 0000-0002-1057-0328
Researcher ID: O-9736-2016
18 Kremlevskaya St., Kazan 420008, Russia

Bibliografia

  1. Vildjiounaite E., Kallio J., Kyllonen V., Nieminen M., Maattanen I., Lindholm M., Mantyjarvi J., Gimel’farb G. Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing, 2018, vol. 22, pp. 671–688. https://doi.org/10.1007/s00779-017-1108-z
  2. Simantiraki O., Giannakakis G., Pampouchidou A., Tsiknakis M. Stress detection from speech using spectral slope measurements. In: Oliver N., Serino S., Matic A., Cipresso P., Filipovic N., Gavrilovska L. (eds) Pervasive Computing Paradigms for Mental Health (FABULOUS 2016, MindCare 2016, IIOT 2015). Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 207. Cham, Springer, 2018, pp. 41–50. https://doi.org/10.1007/978-3-319-74935-8_5
  3. Pili U. Measurement of breathing rate with a smartphone magnetometer: An engaging classroom activity in physics and biology. Physics Education, 2019, vol. 54, iss. 6, art. 063001. https://doi.org/10.1088/1361-6552/ab393f
  4. Xu C., Yang Y., Gao W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter, 2020, vol. 2, iss. 6, pp. 1414–1445. https://doi.org/10.1016/j.matt.2020.03.020
  5. Abay T., Kyriacou P. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Journal of Clinical Monitoring and Computing, 2018, vol. 32, pp. 447–455. https://doi.org/10.1007/s10877-017-0030-2
  6. Kanva A., Sharma C., Deb S. Determination of SpO2 and heart-rate using smartphone camera. Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC). Calcutta, India, 2014, pp. 237–241. https://doi.org/10.1109/CIEC.2014.6959086
  7. Scully C., Lee J., Meyer J., Gorbach A., Granquist-Fraser D., Mendelson Y., Chon K. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, iss. 2, pp. 303–306. https://doi.org/10.1109/TBME.2011.2163157
  8. Carni D. L., Grimaldi D., Sciammarella P. F., Lamonaca F., Spagnuolo V. Setting-up of PPG scaling factors for SpO2% evaluation by smartphone. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Benevento, Italy, 2016, pp. 1–5. https://doi.org/10.1109/MeMeA.2016.7533775
  9. Cheng Q., Juen J., Schatz B. Using mobile phones to simulate pulse oximeters: Gait analysis predicts oxygen saturation. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Bioligy and Health Informatics, 2014, iss. 1, pp. 331–340. https://doi.org/10.1145/2649387.2649403
  10. Chandrasekaran V., Dantu R., Jonnada S., Thiyagaraja S., Subbu K. Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 2013, vol. 60, iss. 4, pp. 1080–1089. https://doi.org/10.1109/TBME.2012.2211078
  11. Pelegris P., Banitsas K., Orbach T., Marias K. A novel method to detect Heart Beat Rate using a mobile phone. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, 2010, pp. 5488–5491. https://doi.org/10.1109/IEMBS.2010.5626580
  12. Morsi I., Gawad Y. Z. A. E. Measurement of blood pressure and heart beat based on sensors and microcontrollers. Applied Mechanics and Materials, 2012, vol. 249–250, pp. 193–201. https://doi.org/10.4028/www.scientific.net/AMM.249-250.193
  13. Xing X., Sun M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomedical Optics Express, 2016, vol. 7, iss. 8, pp. 3007–3020. https://doi.org/10.1364/BOE.7.003007
  14. Slapnicar G., Mlakar N., Lustrek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors, 2019, vol. 19, iss. 15, art. 3420. https://doi.org/10.3390/s19153420

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).