Methods for obtaining information for biomedical monitoring of the level of oxygenation and blood pressure using built-in sensors of smartphone technology
- Authors: Egorchev A.A.1, Chiсkrin D.E.1, Fakhrutdinov A.F.1, Sharipov M.R.1, Burnashev R.A.1
-
Affiliations:
- Kazan (Volga region) Federal University
- Issue: Vol 24, No 3 (2024)
- Pages: 423-431
- Section: Computer Sciences
- URL: https://journals.rcsi.science/1816-9791/article/view/353381
- DOI: https://doi.org/10.18500/1816-9791-2024-24-3-423-431
- EDN: https://elibrary.ru/SWTABZ
- ID: 353381
Cite item
Full Text
Abstract
About the authors
Anton A. Egorchev
Kazan (Volga region) Federal University
ORCID iD: 0000-0001-8561-8616
18 Kremlevskaya St., Kazan 420008, Russia
Dmitry E. Chiсkrin
Kazan (Volga region) Federal University
ORCID iD: 0000-0003-1358-8184
18 Kremlevskaya St., Kazan 420008, Russia
Adel F. Fakhrutdinov
Kazan (Volga region) Federal University18 Kremlevskaya St., Kazan 420008, Russia
Marcel R. Sharipov
Kazan (Volga region) Federal University18 Kremlevskaya St., Kazan 420008, Russia
Rustam A. Burnashev
Kazan (Volga region) Federal University
ORCID iD: 0000-0002-1057-0328
ResearcherId: O-9736-2016
18 Kremlevskaya St., Kazan 420008, Russia
References
- Vildjiounaite E., Kallio J., Kyllonen V., Nieminen M., Maattanen I., Lindholm M., Mantyjarvi J., Gimel’farb G. Unobtrusive stress detection on the basis of smartphone usage data. Personal and Ubiquitous Computing, 2018, vol. 22, pp. 671–688. https://doi.org/10.1007/s00779-017-1108-z
- Simantiraki O., Giannakakis G., Pampouchidou A., Tsiknakis M. Stress detection from speech using spectral slope measurements. In: Oliver N., Serino S., Matic A., Cipresso P., Filipovic N., Gavrilovska L. (eds) Pervasive Computing Paradigms for Mental Health (FABULOUS 2016, MindCare 2016, IIOT 2015). Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 207. Cham, Springer, 2018, pp. 41–50. https://doi.org/10.1007/978-3-319-74935-8_5
- Pili U. Measurement of breathing rate with a smartphone magnetometer: An engaging classroom activity in physics and biology. Physics Education, 2019, vol. 54, iss. 6, art. 063001. https://doi.org/10.1088/1361-6552/ab393f
- Xu C., Yang Y., Gao W. Skin-interfaced sensors in digital medicine: From materials to applications. Matter, 2020, vol. 2, iss. 6, pp. 1414–1445. https://doi.org/10.1016/j.matt.2020.03.020
- Abay T., Kyriacou P. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Journal of Clinical Monitoring and Computing, 2018, vol. 32, pp. 447–455. https://doi.org/10.1007/s10877-017-0030-2
- Kanva A., Sharma C., Deb S. Determination of SpO2 and heart-rate using smartphone camera. Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC). Calcutta, India, 2014, pp. 237–241. https://doi.org/10.1109/CIEC.2014.6959086
- Scully C., Lee J., Meyer J., Gorbach A., Granquist-Fraser D., Mendelson Y., Chon K. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Biomedical Engineering, 2012, vol. 59, iss. 2, pp. 303–306. https://doi.org/10.1109/TBME.2011.2163157
- Carni D. L., Grimaldi D., Sciammarella P. F., Lamonaca F., Spagnuolo V. Setting-up of PPG scaling factors for SpO2% evaluation by smartphone. 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Benevento, Italy, 2016, pp. 1–5. https://doi.org/10.1109/MeMeA.2016.7533775
- Cheng Q., Juen J., Schatz B. Using mobile phones to simulate pulse oximeters: Gait analysis predicts oxygen saturation. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Bioligy and Health Informatics, 2014, iss. 1, pp. 331–340. https://doi.org/10.1145/2649387.2649403
- Chandrasekaran V., Dantu R., Jonnada S., Thiyagaraja S., Subbu K. Cuffless differential blood pressure estimation using smart phones. IEEE Transactions on Biomedical Engineering, 2013, vol. 60, iss. 4, pp. 1080–1089. https://doi.org/10.1109/TBME.2012.2211078
- Pelegris P., Banitsas K., Orbach T., Marias K. A novel method to detect Heart Beat Rate using a mobile phone. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, 2010, pp. 5488–5491. https://doi.org/10.1109/IEMBS.2010.5626580
- Morsi I., Gawad Y. Z. A. E. Measurement of blood pressure and heart beat based on sensors and microcontrollers. Applied Mechanics and Materials, 2012, vol. 249–250, pp. 193–201. https://doi.org/10.4028/www.scientific.net/AMM.249-250.193
- Xing X., Sun M. Optical blood pressure estimation with photoplethysmography and FFT-based neural networks. Biomedical Optics Express, 2016, vol. 7, iss. 8, pp. 3007–3020. https://doi.org/10.1364/BOE.7.003007
- Slapnicar G., Mlakar N., Lustrek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors, 2019, vol. 19, iss. 15, art. 3420. https://doi.org/10.3390/s19153420
Supplementary files


