Global solvability of the inverse spectral problem for differential systems on a finite interval

Cover Page

Cite item

Full Text

Abstract

The inverse spectral problem is studied for non-selfadjoint systems of ordinary differential equations on a finite interval. We provide necessary and sufficient conditions for the global solvability of the inverse problem, along with an algorithm for constructing its solution. For solving this nonlinear inverse problem, we develop ideas of the method of spectral mappings, which allows one to construct the potential matrix from the given spectral characteristics and establish conditions for the global solvability of the inverse problem considered.

About the authors

Vjacheslav Anatol'evich Yurko

Saratov State University

ORCID iD: 0000-0002-4853-0102
SPIN-code: 5783-9055
Scopus Author ID: 6701556903
ResearcherId: D-4755-2013
Astrahanskaya str., 83, Saratov, Russia

References

  1. Levitan B. M., Sargsjan I. S. Sturm – Liouville and Dirac Operators. Mathematics and Aplications, vol. 59. Dordrecht, Kluwer Academic Publishers, 1991. 350 p. (Russ. ed.: Moscow, Nauka, 1988). https://doi.org/10.1007/978-94-011-3748-5
  2. Freiling G., Yurko V. A. Inverse Sturm – Liouville Problems and Their Applications. New York, NOVA Science Publishers, 2001. 305 p.
  3. Shabat A. B. An inverse scattering problem. Differential Equations, 1979, vol. 15, iss. 10, pp. 1299–1307.
  4. Malamud M. M. Questions of uniqueness in inverse problems for systems of differential equations on a finite interval. Transactions of the Moscow Mathematical Society, 1999, vol. 60, pp. 173–224.
  5. Sakhnovich L. A. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory: Advances and Applications, vol. 107. Basel, Birkhauser Verlag, 1999. 202 p. https://doi.org/10.1007/978-3-0348-8713-7
  6. Yurko V. A. Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series, vol. 31. Utrecht, VSP, 2002. 303 p. https://doi.org/10.1515/9783110940961
  7. Yurko V. A. An inverse spectral problem for singular non-selfadjoint differential systems. Sbornik: Mathematics, 2004, vol. 195, iss. 12, pp. 1823–1854. https://doi.org/10.1070/SM2004v195n12ABEH000869
  8. Yurko V. A. Inverse spectral problems for differential systems on a finite interval. Results in Mathematics, 2005, vol. 48, pp. 371–386. https://doi.org/10.1007/BF03323374
  9. Yurko V. A. Recovery of nonselfadjoint differential operators on the half-line from the Weyl matrix. Mathematics of the USSR-Sbornik, 1992, vol. 72, iss. 2, pp. 413–438. https://doi.org/10.1070/SM1992v072n02ABEH002146
  10. Yurko V. A. Inverse Spectral Problems for Differential Operators and their Applications. Amsterdam, Gordon and Breach, 2000. 272 p. https://doi.org/10.1201/9781482287431

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».