


Том 87, № 6 (2023)
Статьи
A functional realization of the Gelfand–Tsetlin base
Аннотация
A realization of a finite dimensional irreducible representation of the Lie algebra $\mathfrak{gl}_n$ in the space of functions on the group $\mathrm{GL}_n$ is considered.It is proved that functions corresponding to Gelfand–Tsetlin diagrams are linear combinations of some new functions of hypergeometric type which are closely related to $A$-hypergeometric functions. These new functions are solution of a system of partial differential equations whichfollows from the Gelfand–Kapranov–Zelevinsky by an “antisymmetrization”. The coefficients in the constructed linear combination are hypergeometric constants, that is, they are values of some hypergeometric functions when instead of all arguments ones are substituted.Bibliography: 16 titles.



Алгебро-геометрический подход к построению полугамильтоновых систем гидродинамического типа
Аннотация



О расслоенной структуре компактных однородных пространств
Аннотация



Вычисление гиперэллиптических систем последовательностей ранга $4$
Аннотация



О тождествах модельных алгебр
Аннотация



Об одном методе решения смешанной краевой задачи для уравнения гиперболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$
Аннотация



New approaches to $\mathfrak{gl}_N$ weight system
Аннотация
The present paper has been motivated by an aspiration for understanding the weight system corresponding to the Lie algebra $\mathfrak{gl}_N$. The straightforward approach to computing the values of a Lie algebra weight system on a general chord diagram amounts to elaborating calculations in the non-commutative universal enveloping algebra, in spite of the fact that the result belongs to the centre of the latter. The first approach is based on M. Kazarian's proposal to define an invariant of permutations taking values in the centre of the universal enveloping algebra of $\mathfrak{gl}_N$. The restriction of this invariant to involutions without fixed points (such an involution determines a chord diagram) coincides with the value of the $\mathfrak{gl}_N$ weight system on this chord diagram. We describe the recursion allowing one to compute the $\mathfrak{gl}_N$ invariant of permutations and demonstrate how it works in a number of examples. The second approach is based on the Harish-Chandra isomorphism for the Lie algebras $\mathfrak{gl}_N$. This isomorphism identifies the centre of the universal enveloping algebra $\mathfrak{gl}_N$ with the ring $\Lambda^*(N)$ of shifted symmetric polynomials in $N$ variables. The Harish-Chandra projection can be applied separately for each monomial in the defining polynomial of the weight system; as a result, the main body of computations can be done in a commutative algebra, rather than non-commutative one.Bibliography: 18 titles.



Исправления
Аннотация


