A prox-regular sweeping process coupled with a maximal monotone differential inclusion
- Authors: Tolstonogov A.A.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
- Issue: Vol 89, No 5 (2025)
- Pages: 181-232
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331265
- DOI: https://doi.org/10.4213/im9701
- ID: 331265
Cite item
Abstract
maximal monotone inclusion is considered. The values of moving set of
the sweeping process are prox-regular sets that depend on time and state
of the system. The right-hand side of the sweeping process contains the sum
of two multivalued time- and state-dependent perturbations with
different semicontinuity properties. The perturbation in the right-hand
side of maximal monotone inclusion is a single-valued function.
A solution to the sweeping process is a right continuous function of
bounded variation (a BV-solution). A solution to the maximal monotone
inclusion is an absolutely continuous function. A theorem on existence
of a solution to this system is proved, and when the perturbations are
convex, a theorem on compactness of the solution set is established.
About the authors
Alexander Alexandrovich Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Email: aatol@icc.ru; alexander.tolstonogov@gmail.com
ORCID iD: 0000-0003-2916-145X
Doctor of physico-mathematical sciences, Professor
References
- J. J. Moreau, “On unilateral constraints, friction and plasticity”, New variational techniques in mathematical physics (Bressanone, 1973), C.I.M.E. Summer Sch., 63, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2011, 171–322
- J. J. Moreau, “An introduction to unilateral dynamics”, Novel approaches in civil engineering, Lect. Notes Appl. Comput. Mech., 14, Springer, Berlin, 2004, 1–46
- M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction, Progr. Nonlinear Differential Equations Appl., 9, Burkhäuser Verlag, Basel, 1993, x+179 pp.
- S. Adly, R. Cibulka, H. Massias, “Variational analysis and generalized equations in electronics. Stability and simulation issues”, Set-Valued Var. Anal., 21:2 (2013), 333–358
- B. Brogliato, L. Thibault, “Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems”, J. Convex Anal., 17:3-4 (2010), 961–990
- D. Goeleven, Complementarity and variational inequalities in electronics, Math. Anal. Appl., Academic Press, London, 2017, xv+192 pp.
- S. Adly, M. Sofonea, “Time-dependent inclusions and sweeping processes in contact mechanics”, Z. Angew. Math. Phys., 70:2 (2019), 39, 19 pp.
- F. Nacry, M. Sofonea, “A class of nonlinear inclusions and sweeping processes in solid mechanics”, Acta Appl. Math., 171 (2021), 16, 26 pp.
- Ba Khiet Le, “On a class of Lur'e dynamical systems with state-dependent set-valued feedback”, Set-Valued Var. Anal., 28:3 (2020), 537–557
- B. Brogliato, A. Tanwani, “Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability”, SIAM Rev., 62:1 (2020), 3–129
- J. Venel, “A numerical scheme for a class of sweeping processes”, Numer. Math., 118:2 (2011), 367–400
- S. Saidi, “Second-order evolution problems by time and state-dependent maximal monotone operators and set-valued perturbations”, Int. J. Nonlinear Anal. Appl., 14:1 (2023), 699–715
- R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
- S. Adly, F. Nacry, L. Thibault, “Discontinuous sweeping process with prox-regular sets”, ESAIM Control Optim. Calc. Var., 23:4 (2017), 1293–1329
- F. Nacry, J. Noel, L. Thibault, “On first and second order state-dependent prox-regular sweeping processes”, Pure Appl. Funct. Anal., 6:6 (2021), 1453–1493
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- H. Attouch, “Familles d'operateurs maximaux monotones et mesurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
- N. Dinculeanu, Vector measures, Hochschulbücher für Math., 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966, x+432 pp.
- P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp.
- J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp.
- J. J. Moreau, “Sur les mesures differentielles des fonctions vectorielles à variation localement bornee”, Travaux du seminaire d'analyse convexe, v. 5, Univ. Sci. Tech. Languedoc, U.E.R. de Math., Montpellier, 1975, Exp. No. 17, 39 pp.
- L. Thibault, “Moreau sweeping process with bounded truncated retraction”, J. Convex Anal., 23:4 (2016), 1051–1098
- Shui-Hung Hou, “On property $(Q)$ and other semicontinuity properties of multifunctions”, Pacific J. Math., 103:1 (1982), 39–56
- D. Fraňkova, “Regulated functions”, Math. Bohem., 116:1 (1991), 20–59
- D. Azzam-Laouir, S. Izza, L. Thibault, “Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process”, Set-Valued Var. Anal., 22:1 (2014), 271–283
- Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis. Theory, Kluwer Acad. Publ., Boston, MA, 2003, xvi+689 pp.
- A. A. Tolstonogov, “Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators”, J. Math. Anal. Appl., 526:1 (2023), 127197, 29 pp.
- T. Ważewski, “Systèmes des equations et des inegalites differentielles ordinaires aux deuxièmes membres monotones et leurs applications”, Ann. Soc. Polon. Math., 23 (1950), 112–166
- Ky Fan, “Fixed point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38:2 (1952), 121–126
- A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
- M. Benguessoum, D. Azzam-Laouir, Ch. Castaing, “On a time and state dependent maximal monotone operator coupled with a sweeping process with perturbations”, Set-Valued Var. Anal., 29:1 (2021), 191–219
- D. Azzam-Laouir, M. Benguessoum, “Multi-valued perturbations to a couple of differential inclusions governed by maximal monotone operators”, Filomat, 35:13 (2021), 4369–4380
- K. Dib, D. Azzam-Laouir, “Existence solutions for a couple of differential inclusions involving maximal monotone operators”, Appl. Anal., 102:9 (2023), 2628–2650
- S. Saïdi, “Coupled problems driven by time and state-dependent maximal monotone operators”, Numer. Algebra Control Optim., 14:3 (2024), 547–580
- C. Castaing, C. Godet-Thobie, S. Saïdi, “On fractional evolution inclusion coupled with a time and state dependent maximal monotone operator”, Set-Valued Var. Anal., 30:2 (2022), 621–656
- C. Castaing, A. G. Ibrahim, M. Yarou, “Some contributions to nonconvex sweeping process”, J. Nonlinear Convex Anal., 10:1 (2009), 1–20
- S. Lounis, T. Haddad, M. Sene, “Non-convex second-order Moreau's sweeping processes in Hilbert spaces”, J. Fixed Point Theory Appl., 19:4 (2017), 2895–2908
- S. Adly, Ba Khiet Le, “Second-order state dependent sweeping process with unbounded and nonconvex constraints”, Pure Appl. Funct. Anal., 3:2 (2018), 271–285
- F. Aliouane, D. Azzam-Laouir, C. Castaing, M. D. P. Monteiro Marques, “Second-order time and state-dependent sweeping process in Hilbert space”, J. Optim. Theory Appl., 182:1 (2019), 153–188
- S. Adly, F. Nacry, “An existence result for discontinuous second-order nonconvex state-dependent sweeping processes”, Appl. Math. Optim., 79:2 (2019), 515–546
Supplementary files
