A prox-regular sweeping process coupled with a maximal monotone differential inclusion
- 作者: Tolstonogov A.A.1
-
隶属关系:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
- 期: 卷 89, 编号 5 (2025)
- 页面: 181-232
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331265
- DOI: https://doi.org/10.4213/im9701
- ID: 331265
如何引用文章
详细
maximal monotone inclusion is considered. The values of moving set of
the sweeping process are prox-regular sets that depend on time and state
of the system. The right-hand side of the sweeping process contains the sum
of two multivalued time- and state-dependent perturbations with
different semicontinuity properties. The perturbation in the right-hand
side of maximal monotone inclusion is a single-valued function.
A solution to the sweeping process is a right continuous function of
bounded variation (a BV-solution). A solution to the maximal monotone
inclusion is an absolutely continuous function. A theorem on existence
of a solution to this system is proved, and when the perturbations are
convex, a theorem on compactness of the solution set is established.
作者简介
Alexander Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Email: aatol@icc.ru; alexander.tolstonogov@gmail.com
ORCID iD: 0000-0003-2916-145X
Doctor of physico-mathematical sciences, Professor
参考
- J. J. Moreau, “On unilateral constraints, friction and plasticity”, New variational techniques in mathematical physics (Bressanone, 1973), C.I.M.E. Summer Sch., 63, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2011, 171–322
- J. J. Moreau, “An introduction to unilateral dynamics”, Novel approaches in civil engineering, Lect. Notes Appl. Comput. Mech., 14, Springer, Berlin, 2004, 1–46
- M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction, Progr. Nonlinear Differential Equations Appl., 9, Burkhäuser Verlag, Basel, 1993, x+179 pp.
- S. Adly, R. Cibulka, H. Massias, “Variational analysis and generalized equations in electronics. Stability and simulation issues”, Set-Valued Var. Anal., 21:2 (2013), 333–358
- B. Brogliato, L. Thibault, “Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems”, J. Convex Anal., 17:3-4 (2010), 961–990
- D. Goeleven, Complementarity and variational inequalities in electronics, Math. Anal. Appl., Academic Press, London, 2017, xv+192 pp.
- S. Adly, M. Sofonea, “Time-dependent inclusions and sweeping processes in contact mechanics”, Z. Angew. Math. Phys., 70:2 (2019), 39, 19 pp.
- F. Nacry, M. Sofonea, “A class of nonlinear inclusions and sweeping processes in solid mechanics”, Acta Appl. Math., 171 (2021), 16, 26 pp.
- Ba Khiet Le, “On a class of Lur'e dynamical systems with state-dependent set-valued feedback”, Set-Valued Var. Anal., 28:3 (2020), 537–557
- B. Brogliato, A. Tanwani, “Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability”, SIAM Rev., 62:1 (2020), 3–129
- J. Venel, “A numerical scheme for a class of sweeping processes”, Numer. Math., 118:2 (2011), 367–400
- S. Saidi, “Second-order evolution problems by time and state-dependent maximal monotone operators and set-valued perturbations”, Int. J. Nonlinear Anal. Appl., 14:1 (2023), 699–715
- R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
- S. Adly, F. Nacry, L. Thibault, “Discontinuous sweeping process with prox-regular sets”, ESAIM Control Optim. Calc. Var., 23:4 (2017), 1293–1329
- F. Nacry, J. Noel, L. Thibault, “On first and second order state-dependent prox-regular sweeping processes”, Pure Appl. Funct. Anal., 6:6 (2021), 1453–1493
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- H. Attouch, “Familles d'operateurs maximaux monotones et mesurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
- N. Dinculeanu, Vector measures, Hochschulbücher für Math., 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966, x+432 pp.
- P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp.
- J. Diestel, J. J. Uhl, Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977, xiii+322 pp.
- J. J. Moreau, “Sur les mesures differentielles des fonctions vectorielles à variation localement bornee”, Travaux du seminaire d'analyse convexe, v. 5, Univ. Sci. Tech. Languedoc, U.E.R. de Math., Montpellier, 1975, Exp. No. 17, 39 pp.
- L. Thibault, “Moreau sweeping process with bounded truncated retraction”, J. Convex Anal., 23:4 (2016), 1051–1098
- Shui-Hung Hou, “On property $(Q)$ and other semicontinuity properties of multifunctions”, Pacific J. Math., 103:1 (1982), 39–56
- D. Fraňkova, “Regulated functions”, Math. Bohem., 116:1 (1991), 20–59
- D. Azzam-Laouir, S. Izza, L. Thibault, “Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process”, Set-Valued Var. Anal., 22:1 (2014), 271–283
- Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis. Theory, Kluwer Acad. Publ., Boston, MA, 2003, xvi+689 pp.
- A. A. Tolstonogov, “Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators”, J. Math. Anal. Appl., 526:1 (2023), 127197, 29 pp.
- T. Ważewski, “Systèmes des equations et des inegalites differentielles ordinaires aux deuxièmes membres monotones et leurs applications”, Ann. Soc. Polon. Math., 23 (1950), 112–166
- Ky Fan, “Fixed point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38:2 (1952), 121–126
- A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
- M. Benguessoum, D. Azzam-Laouir, Ch. Castaing, “On a time and state dependent maximal monotone operator coupled with a sweeping process with perturbations”, Set-Valued Var. Anal., 29:1 (2021), 191–219
- D. Azzam-Laouir, M. Benguessoum, “Multi-valued perturbations to a couple of differential inclusions governed by maximal monotone operators”, Filomat, 35:13 (2021), 4369–4380
- K. Dib, D. Azzam-Laouir, “Existence solutions for a couple of differential inclusions involving maximal monotone operators”, Appl. Anal., 102:9 (2023), 2628–2650
- S. Saïdi, “Coupled problems driven by time and state-dependent maximal monotone operators”, Numer. Algebra Control Optim., 14:3 (2024), 547–580
- C. Castaing, C. Godet-Thobie, S. Saïdi, “On fractional evolution inclusion coupled with a time and state dependent maximal monotone operator”, Set-Valued Var. Anal., 30:2 (2022), 621–656
- C. Castaing, A. G. Ibrahim, M. Yarou, “Some contributions to nonconvex sweeping process”, J. Nonlinear Convex Anal., 10:1 (2009), 1–20
- S. Lounis, T. Haddad, M. Sene, “Non-convex second-order Moreau's sweeping processes in Hilbert spaces”, J. Fixed Point Theory Appl., 19:4 (2017), 2895–2908
- S. Adly, Ba Khiet Le, “Second-order state dependent sweeping process with unbounded and nonconvex constraints”, Pure Appl. Funct. Anal., 3:2 (2018), 271–285
- F. Aliouane, D. Azzam-Laouir, C. Castaing, M. D. P. Monteiro Marques, “Second-order time and state-dependent sweeping process in Hilbert space”, J. Optim. Theory Appl., 182:1 (2019), 153–188
- S. Adly, F. Nacry, “An existence result for discontinuous second-order nonconvex state-dependent sweeping processes”, Appl. Math. Optim., 79:2 (2019), 515–546
补充文件
