Perverse sheaves on smooth toric varieties and stacks
- Authors: Guminov S.V.1,2
-
Affiliations:
- Centre of Pure MathematicsMIPT
- National Research University Higher School of Economics, Moscow
- Issue: Vol 89, No 5 (2025)
- Pages: 80-106
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331262
- DOI: https://doi.org/10.4213/im9687
- ID: 331262
Cite item
Abstract
perverse sheaves on a variety using only its definition as a heart
of a
on a smooth toric variety with its orbit stratification is described
explicitly as a category of finite-dimensional modules over an
algebra. An analogous result is also established for various
categories of equivariant perverse sheaves, which in particular
gives a description of perverse sheaves on toric orbifolds, and we
also compare the derived category of the category of perverse
sheaves to the derived category of constructible sheaves.
Keywords
About the authors
Sergey Vladimirovich Guminov
Centre of Pure MathematicsMIPT; National Research University Higher School of Economics, Moscow
Email: sergey.guminov@gmail.com
ORCID iD: 0000-0003-0009-0344
ResearcherId: U-2980-2019
without scientific degree, no status
References
- R. MacPherson, K. Vilonen, “Elementary construction of perverse sheaves”, Invent. Math., 84:2 (1986), 403–435
- S. Gelfand, R. MacPherson, K. Vilonen, Microlocal perverse sheaves
- A. A. Beilinson, “How to glue perverse sheaves”, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 42–51
- M. Kapranov, V. Schechtman, “Perverse sheaves over real hyperplane arrangements”, Ann. of Math. (2), 183:2 (2016), 619–679
- T. Braden, M. Grinberg, “Perverse sheaves on rank stratifications”, Duke Math. J., 96:2 (1999), 317–362
- T. Braden, “Perverse sheaves on Grassmannians”, Canad. J. Math., 54:3 (2002), 493–532
- A. Galligo, M. Granger, P. Maisonobe, “$mathscr{D}$-modules et faisceaux pervers dont le support singulier est un croisement normal”, Ann. Inst. Fourier (Grenoble), 35:1 (1985), 1–48
- D. Dupont, Exemples de classification du champ des faisceaux pervers, Ph.D. Thesis, Univ. Nice, 2008, vii+116 pp.
- A. Bondal, T. Logvinenko, Perverse schobers and orbifolds, Preprint
- A. A. Beilinson, “On the derived category of perverse sheaves”, K-Theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 27–41
- A. Beilinson, J. Bernstein, P. Deligne, O. Gabber, Faisceaux pervers, Asterisque, 100, 2nd ed., Soc. Math. France, Paris, 2018, vi+180 pp.
- P. N. Achar, Perverse sheaves and applications to representation theory, Math. Surveys Monogr., 258, Amer. Math. Soc., Providence, RI, 2021, xii+562 pp.
- J.-L. Verdier, “Prolongement des faisceaux pervers monodromiques”, Systèmes differentiels et singularites (Luminy, 1983), Asterisque, 130, Soc. Math. France, Paris, 1985, 210–217
- B. Gammage, M. McBreen, B. Webster, Homological mirror symmetry for hypertoric varieties II
- G. Janelidze, W. Tholen, “Facets of descent. I”, Appl. Categ. Structures, 2:3 (1994), 245–281
- B. Kahn, “On the Benabou–Roubaud theorem”, Cah. Topol. Geom. Differ. Categ., 66:2 (2025), 3–18
- V. V. Lyubashenko, “Exterior tensor product of perverse sheaves”, Ukrainian Math. J., 53:3 (2001), 354–367
- I. L. Franco, “Tensor products of finitely cocomplete and abelian categories”, J. Algebra, 396 (2013), 207–219
- M. Kashiwara, P. Schapira, Sheaves on manifolds. With a short history “Les debuts de la theorie des faisceaux” by Christian Houzel, Grundlehren Math. Wiss., 292, 2nd reprint, Springer-Verlag, Berlin, 2002, x+512 pp.
- L. A. Borisov, L. Chen, G. G. Smith, “The orbifold Chow ring of toric Deligne–Mumford stacks”, J. Amer. Math. Soc., 18:1 (2005), 193–215
Supplementary files
