On accumulation points of volumes of log surfaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $\mathcal{C} \subset [0,1]$ be a set satisfying the descending chaincondition. We show that every accumulation point of volumes of log canonicalsurfaces $(X, B)$ with coefficients in $ \mathcal{C} $ can be realized asthe volume of a log canonical surface with big and nef $K_X+B$ and withcoefficients in $\overline{\mathcal{C}} \cup \{1 \}$ in such a way that atleast one coefficient lies in $\operatorname{Acc} (\mathcal{C}) \cup \{1 \}$.As a corollary, if $\overline {\mathcal{C}} \subset \mathbb{Q}$, then allaccumulation points of volumes are rational numbers. This proves a conjectureof Blache. For the set of standard coefficients$\mathcal{C}_2=\{1-1/{n} \mid n\in\mathbb{N} \} \cup \{1 \}$ we prove thatthe minimal accumulation point is between $1/{(7^2 \cdot 42^2)}$ and$1/{42^2}$.

About the authors

Valery Anatol'evich Alexeev

University of Georgia

Wenfei Liu

Xiamen University

Email: wliu@xmu.edu.cn

References

  1. V. Alexeev, “Boundedness and $K^2$ for log surfaces”, Internat. J. Math., 5:6 (1994), 779–810
  2. R. Blache, “An example concerning Alexeev's boundedness results on log surfaces”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 65–69
  3. J. Kollar, “Is there a topological Bogomolov–Miyaoka–Yau inequality?”, Pure Appl. Math. Q., 4:2, Special issue: In honor of F. Bogomolov. Part 1 (2008), 203–236
  4. G. Urzua, J. I. Yañez, Notes on accumulation points of $K^2$, Preprint, 2017
  5. V. Alexeev, W. Liu, “Open surfaces of small volume”, Algebr. Geom. (to appear)
  6. J. Kollar, “Log surfaces of general type; some conjectures”, Classification of algebraic varieties (L'Aquila, 1992), Contemp. Math., 162, Amer. Math. Soc., Providence, RI, 1994, 261–275
  7. V. Alexeev, S. Mori, “Bounding singular surfaces of general type”, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 143–174
  8. J. Kollar, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  9. O. Fujino, “Fundamental theorems for the log minimal model program”, Publ. Res. Inst. Math. Sci., 47:3 (2011), 727–789
  10. M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math., 84:3 (1962), 485–496
  11. V. Alexeev, “Classification of log canonical surface singularities: arithmetical approach”, Flips and abundance for algebraic threefolds (Univ. of Utah, Salt Lake City, 1991), Asterisque, 211, Soc. Math. France, Paris, 1992, 47–58
  12. В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203
  13. Wenfei Liu, The minimal volume of log surfaces of general type with positive geometric genus, 2017
  14. R. Blache, “Riemann–Roch theorem for normal surfaces and applications”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 307–340

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Alexeev V.A., Liu W.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).