Division by 2 on odd-degree hyperelliptic curves and their Jacobians

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $K$ be an algebraically closed field of characteristic differentfrom $2$, $g$ a positive integer, $f(x)$ a polynomial of degree $2g+1$with coefficients in $K$ and without multiple roots,$\mathcal{C}\colon y^2=f(x)$ the corresponding hyperelliptic curve ofgenus $g$ over $K$, and $J$ its Jacobian. We identify $\mathcal{C}$ withthe image of its canonical embedding in $J$ (the infinite point of$\mathcal{C}$ goes to the identity element of $J$). It is well known thatfor every $\mathfrak{b} \in J(K)$ there are exactly $2^{2g}$ elements$\mathfrak{a}\in J(K)$ such that $2\mathfrak{a}=\mathfrak{b}$. Stollconstructed an algorithm that provides the Mumford representationsof all such $\mathfrak{a}$ in terms of the Mumford representation of$\mathfrak{b}$. The aim of this paper is to give explicit formulaefor the Mumford representations of all such $\mathfrak{a}$ in terms ofthe coordinates $a,b$, where $\mathfrak{b}\in J(K)$ is given by a point$P=(a,b) \in \mathcal{C}(K)\subset J(K)$. We also prove that if $g>1$,then $\mathcal{C}(K)$ does not contain torsion points of ordersbetween $3$ and $2g$.

About the authors

Yuri Gennad'evich Zarhin

Department of Mathematics, Pennsylvania State University

Email: zarhin@math.psu.edu
Doctor of physico-mathematical sciences, Professor

References

  1. Д. Мамфорд, Лекции о тета-функциях, Мир, М., 1988, 448 с.
  2. L. C. Washington, Elliptic curves. Number theory and cryptography, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2008, xviii+513 pp.
  3. M. Stoll, “Chabauty without the Mordell–Weil group”, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, 623–663
  4. Б. М. Беккер, Ю. Г. Зархин, “Деление на $2$ рациональных точек на эллиптических кривых”, Алгебра и анализ, 29:4 (2017), 196–239
  5. E. F. Schaefer, “$2$-descent on the Jacobians of hyperelliptic curves”, J. Number Theory, 51:2 (1995), 219–232
  6. J. Yelton, “Images of $2$-adic representations associated to hyperelliptic Jacobians”, J. Number Theory, 151 (2015), 7–17
  7. M. Stoll, Arithmetic of hyperelliptic curves, Summer semester 2014, Univ. of Bayreuth, 2014, 42 pp.
  8. J. Boxall, D. Grant, “Examples of torsion points on genus two curves”, Trans. Amer. Math. Soc., 352:10 (2000), 4533–4555
  9. Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
  10. N. Bruin, E. V. Flynn, “Towers of $2$-covers of hyperelliptic curves”, Trans. Amer. Math. Soc., 357:11 (2005), 4329–4347
  11. J. Boxall, D. Grant, F. Leprevost, “$5$-torsion points on curves of genus $2$”, J. London Math. Soc. (2), 64:1 (2001), 29–43
  12. M. Raynaud, “Courbes sur une variete abelienne et points de torsion”, Invent. Math., 71:1 (1983), 207–233
  13. B. Poonen, M. Stoll, “Most odd degree hyperelliptic curves have only one rational point”, Ann. of Math. (2), 180:3 (2014), 1137–1166
  14. M. Raynaud, “Sous-varietes d'une variete abelienne et points de torsion”, Arithmetic and geometry, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, v. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 327–352

Copyright (c) 2019 Zarhin Y.G.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies