Деление на 2 в гиперэллиптических кривых нечетной степени и их якобианах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Пусть $K$ – алгебраически замкнутое поле характеристики, отличной от $2$, $g$ – натуральное число, $f(x)$ – многочлен степени $(2g+1)$ с коэффициентами в $K$ и без кратных корней, $\mathcal{C}\colon y^2=f(x)$ – соответствующая гиперэллиптическая кривая рода $g$ над $K$, а $J$ – ее якобиан. Мы отождествляем $\mathcal{C}$ с ее образом при каноническом вложении в якобиан $J$ (при котором единственная бесконечная точка кривой $\mathcal{C}$ переходит в ноль группового закона на $J$).Хорошо известно, что для каждой точки $\mathfrak{b} \in J(K)$ найдется ровно $2^{2g}$ элемента $\mathfrak{a}\in J(K)$ таких, что $2\mathfrak{a}=\mathfrak{b}$. М. Штоль построил алгоритм, позволяющий найти представления Мамфорда всех таких $\mathfrak{a}$, если известно представление Мамфорда точки $\mathfrak{b}$. Цель настоящей работы – дать явные формулы в терминах координат $a,b$ для представлений Мамфорда всех таких $\mathfrak{a}$, когда $\mathfrak{b}\in J(K)$ совпадает с точкой нашей кривой $P=(a,b) \in \mathcal{C}(K)\subset J(K)$. Мы также доказываем, что если $g>1$, то $\mathcal{C}(K)$ не содержит точек кручения, порядок которых лежит между $3$ и $2g$.Библиография: 14 наименований.

Об авторах

Юрий Геннадьевич Зархин

Университет штата Пенсильвания, математический факультет

Email: zarhin@math.psu.edu
доктор физико-математических наук, профессор

Список литературы

  1. Д. Мамфорд, Лекции о тета-функциях, Мир, М., 1988, 448 с.
  2. L. C. Washington, Elliptic curves. Number theory and cryptography, Discrete Math. Appl. (Boca Raton), 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2008, xviii+513 pp.
  3. M. Stoll, “Chabauty without the Mordell–Weil group”, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, 623–663
  4. Б. М. Беккер, Ю. Г. Зархин, “Деление на $2$ рациональных точек на эллиптических кривых”, Алгебра и анализ, 29:4 (2017), 196–239
  5. E. F. Schaefer, “$2$-descent on the Jacobians of hyperelliptic curves”, J. Number Theory, 51:2 (1995), 219–232
  6. J. Yelton, “Images of $2$-adic representations associated to hyperelliptic Jacobians”, J. Number Theory, 151 (2015), 7–17
  7. M. Stoll, Arithmetic of hyperelliptic curves, Summer semester 2014, Univ. of Bayreuth, 2014, 42 pp.
  8. J. Boxall, D. Grant, “Examples of torsion points on genus two curves”, Trans. Amer. Math. Soc., 352:10 (2000), 4533–4555
  9. Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
  10. N. Bruin, E. V. Flynn, “Towers of $2$-covers of hyperelliptic curves”, Trans. Amer. Math. Soc., 357:11 (2005), 4329–4347
  11. J. Boxall, D. Grant, F. Leprevost, “$5$-torsion points on curves of genus $2$”, J. London Math. Soc. (2), 64:1 (2001), 29–43
  12. M. Raynaud, “Courbes sur une variete abelienne et points de torsion”, Invent. Math., 71:1 (1983), 207–233
  13. B. Poonen, M. Stoll, “Most odd degree hyperelliptic curves have only one rational point”, Ann. of Math. (2), 180:3 (2014), 1137–1166
  14. M. Raynaud, “Sous-varietes d'une variete abelienne et points de torsion”, Arithmetic and geometry, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, v. I, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983, 327–352

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Зархин Ю.Г., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».