Topaj–Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators
- Autores: Kruglov V.P.1,2,3, Kuznetsov S.P.1,2
- 
							Afiliações: 
							- Udmurt State University
- Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Steklov Mathematical Institute
 
- Edição: Volume 24, Nº 6 (2019)
- Páginas: 725-738
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219426
- DOI: https://doi.org/10.1134/S1560354719060108
- ID: 219426
Citar
Resumo
We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj–Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj–Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.
Palavras-chave
Sobre autores
Vyacheslav Kruglov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Steklov Mathematical Institute
							Autor responsável pela correspondência
							Email: kruglovyacheslav@gmail.com
				                					                																			                												                	Rússia, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Gubkina 8, Moscow, 119991						
Sergey Kuznetsov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
							Autor responsável pela correspondência
							Email: spkuz@yandex.ru
				                					                																			                												                	Rússia, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					