Topaj–Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators
- Авторы: Kruglov V.P.1,2,3, Kuznetsov S.P.1,2
- 
							Учреждения: 
							- Udmurt State University
- Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Steklov Mathematical Institute
 
- Выпуск: Том 24, № 6 (2019)
- Страницы: 725-738
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219426
- DOI: https://doi.org/10.1134/S1560354719060108
- ID: 219426
Цитировать
Аннотация
We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj–Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj–Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.
Ключевые слова
Об авторах
Vyacheslav Kruglov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Steklov Mathematical Institute
							Автор, ответственный за переписку.
							Email: kruglovyacheslav@gmail.com
				                					                																			                												                	Россия, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Gubkina 8, Moscow, 119991						
Sergey Kuznetsov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
							Автор, ответственный за переписку.
							Email: spkuz@yandex.ru
				                					                																			                												                	Россия, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					