Topaj–Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj–Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj–Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.

作者简介

Vyacheslav Kruglov

Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: kruglovyacheslav@gmail.com
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Gubkina 8, Moscow, 119991

Sergey Kuznetsov

Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

编辑信件的主要联系方式.
Email: spkuz@yandex.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019