Topaj–Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators
- Авторлар: Kruglov V.P.1,2,3, Kuznetsov S.P.1,2
- 
							Мекемелер: 
							- Udmurt State University
- Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Steklov Mathematical Institute
 
- Шығарылым: Том 24, № 6 (2019)
- Беттер: 725-738
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219426
- DOI: https://doi.org/10.1134/S1560354719060108
- ID: 219426
Дәйексөз келтіру
Аннотация
We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj–Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj–Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.
Негізгі сөздер
Авторлар туралы
Vyacheslav Kruglov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Steklov Mathematical Institute
							Хат алмасуға жауапты Автор.
							Email: kruglovyacheslav@gmail.com
				                					                																			                												                	Ресей, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Gubkina 8, Moscow, 119991						
Sergey Kuznetsov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
							Хат алмасуға жауапты Автор.
							Email: spkuz@yandex.ru
				                					                																			                												                	Ресей, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					