Exploration of Novel MTH1 Inhibitors Using Fragment-Based De Novo Design, Virtual Screening, and Reverse Virtual Screening Methods


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

MTH1 (MutT homologue 1, NUDT1), a member of the Nudix phosphohydrolase superfamily of enzymes, was speculated to contribute to hampering tumor growth based on a number of validation experiments. Based on the crystal structure of MTH1, de novo design was employed to construct a series of new MTH1 inhibitors by means of fragment-based strategy. ADMET (absorption, distribution, metabolism, excretion, toxicity) were used to assess the pharmacokinetic profiles; pharmacophore screening and molecular docking were carried out to obtain 9 candidate molecules. Then, molecular dynamic (MD) simulations were performed to learn the stability of receptor–ligand complexes, which have the lowest binding energy in docking, and the binding model was analyzed. Finally, using reverse virtual screening, potential targets of query compounds, especially those enzymes participating in various cancer-related pathways, were found. The results provide theoretical basis for the design of more potent MTH1 inhibitors.

作者简介

Xin-yu Zhao

College of Chemical Engineering, Qingdao University of Science and Technology

Email: qustndds@163.com
中国, Qingdao, 266042

Kai Liu

College of Chemical Engineering, Qingdao University of Science and Technology

Email: qustndds@163.com
中国, Qingdao, 266042

Xiao-li Wang

College of Chemical Engineering, Qingdao University of Science and Technology

Email: qustndds@163.com
中国, Qingdao, 266042

Ri-lei Yu

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy,
Ocean University of China

Email: qustndds@163.com
中国, Qingdao, 266003

Cong-min Kang

College of Chemical Engineering, Qingdao University of Science and Technology

编辑信件的主要联系方式.
Email: qustndds@163.com
中国, Qingdao, 266042


版权所有 © Pleiades Publishing, Ltd., 2019
##common.cookie##