On the Problem of Condensation onto Compact Spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Assuming the continuum hypothesis CH, it is proved that there exists a perfectly normal compact topological space Z and a countable set \(E \subset Z\) such that \(Z{\backslash }E\) is not condensed onto a compact space. The existence of such a space answers (in CH) negatively to V.I. Ponomarev’s question as to whether every perfectly normal compact space is an \(\alpha \)-space. It is proved that, in the class of ordered compact spaces, the property of being an \(\alpha \)-space is not multiplicative.

Sobre autores

A. Osipov

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

Autor responsável pela correspondência
Email: oab@list.ru
Rússia, Yekaterinburg, 620219; Yekaterinburg, 620002

E. Pytkeev

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: oab@list.ru
Rússia, Yekaterinburg, 620219; Yekaterinburg, 620002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019