On the Problem of Condensation onto Compact Spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Assuming the continuum hypothesis CH, it is proved that there exists a perfectly normal compact topological space Z and a countable set \(E \subset Z\) such that \(Z{\backslash }E\) is not condensed onto a compact space. The existence of such a space answers (in CH) negatively to V.I. Ponomarev’s question as to whether every perfectly normal compact space is an \(\alpha \)-space. It is proved that, in the class of ordered compact spaces, the property of being an \(\alpha \)-space is not multiplicative.

作者简介

A. Osipov

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

编辑信件的主要联系方式.
Email: oab@list.ru
俄罗斯联邦, Yekaterinburg, 620219; Yekaterinburg, 620002

E. Pytkeev

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: oab@list.ru
俄罗斯联邦, Yekaterinburg, 620219; Yekaterinburg, 620002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019