On the Problem of Condensation onto Compact Spaces


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Assuming the continuum hypothesis CH, it is proved that there exists a perfectly normal compact topological space Z and a countable set \(E \subset Z\) such that \(Z{\backslash }E\) is not condensed onto a compact space. The existence of such a space answers (in CH) negatively to V.I. Ponomarev’s question as to whether every perfectly normal compact space is an \(\alpha \)-space. It is proved that, in the class of ordered compact spaces, the property of being an \(\alpha \)-space is not multiplicative.

Авторлар туралы

A. Osipov

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

Хат алмасуға жауапты Автор.
Email: oab@list.ru
Ресей, Yekaterinburg, 620219; Yekaterinburg, 620002

E. Pytkeev

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: oab@list.ru
Ресей, Yekaterinburg, 620219; Yekaterinburg, 620002

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019