On Optimal Bounds in the Local Semicircle Law under Four Moment Condition
- Authors: Götze F.1, Naumov A.A.2,3, Tikhomirov A.N.2,4
 - 
							Affiliations: 
							
- University of Bielefeld
 - National Research University Higher School of Economics
 - Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
 - Komi Center of Science, Ural Branch, Russian Academy of Sciences
 
 - Issue: Vol 99, No 1 (2019)
 - Pages: 40-43
 - Section: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/225617
 - DOI: https://doi.org/10.1134/S1064562419010125
 - ID: 225617
 
Cite item
Abstract
We consider symmetric random matrices \({{{\mathbf{X}}}_{n}} = [{{X}_{{jk}}}]_{{j,k = 1}}^{n},n \geqslant 1\), whose upper triangular entries are independent random variables with zero mean and unit variance. Under the assumption \(\mathbb{E}{\text{|}}{{X}_{{jk}}}{{{\text{|}}}^{4}} < C\), j, k = 1, 2, ..., n, it is shown that the fluctuations of the Stieltjes transform mn(z), \(z = u + i{v},{v} > 0,\) of the empirical spectral distribution function of the matrix \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) about the Stieltjes transform \({{m}_{{{\text{sc}}}}}(z)\) of Wigner’s semicircle law are of order (n\({v}\))\(^{{ - 1}}\text{ln}n\). An application of the result obtained to the convergence rate in probability of the empirical spectral distribution function of \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) to Wigner’s semicircle law in the uniform metric is discussed.
About the authors
F. Götze
University of Bielefeld
														Email: anaumov@hse.ru
				                					                																			                												                	Germany, 							Bielefeld						
A. A. Naumov
National Research University Higher School of Economics; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
							Author for correspondence.
							Email: anaumov@hse.ru
				                					                																			                												                	Russian Federation, 							Moscow, 101000; Moscow, 127994						
A. N. Tikhomirov
National Research University Higher School of Economics; Komi Center of Science, Ural Branch, Russian Academyof Sciences
														Email: anaumov@hse.ru
				                					                																			                												                	Russian Federation, 							Moscow, 101000; Syktyvkar						
Supplementary files
				
			
					
						
						
						
						
				