On Optimal Bounds in the Local Semicircle Law under Four Moment Condition


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider symmetric random matrices \({{{\mathbf{X}}}_{n}} = [{{X}_{{jk}}}]_{{j,k = 1}}^{n},n \geqslant 1\), whose upper triangular entries are independent random variables with zero mean and unit variance. Under the assumption \(\mathbb{E}{\text{|}}{{X}_{{jk}}}{{{\text{|}}}^{4}} < C\), j, k = 1, 2, ..., n, it is shown that the fluctuations of the Stieltjes transform mn(z), \(z = u + i{v},{v} > 0,\) of the empirical spectral distribution function of the matrix \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) about the Stieltjes transform \({{m}_{{{\text{sc}}}}}(z)\) of Wigner’s semicircle law are of order (n\({v}\))\(^{{ - 1}}\text{ln}n\). An application of the result obtained to the convergence rate in probability of the empirical spectral distribution function of \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) to Wigner’s semicircle law in the uniform metric is discussed.

About the authors

F. Götze

University of Bielefeld

Email: anaumov@hse.ru
Germany, Bielefeld

A. A. Naumov

National Research University Higher School of Economics; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Author for correspondence.
Email: anaumov@hse.ru
Russian Federation, Moscow, 101000; Moscow, 127994

A. N. Tikhomirov

National Research University Higher School of Economics; Komi Center of Science, Ural Branch, Russian Academy
of Sciences

Email: anaumov@hse.ru
Russian Federation, Moscow, 101000; Syktyvkar

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.