On Optimal Bounds in the Local Semicircle Law under Four Moment Condition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider symmetric random matrices \({{{\mathbf{X}}}_{n}} = [{{X}_{{jk}}}]_{{j,k = 1}}^{n},n \geqslant 1\), whose upper triangular entries are independent random variables with zero mean and unit variance. Under the assumption \(\mathbb{E}{\text{|}}{{X}_{{jk}}}{{{\text{|}}}^{4}} < C\), j, k = 1, 2, ..., n, it is shown that the fluctuations of the Stieltjes transform mn(z), \(z = u + i{v},{v} > 0,\) of the empirical spectral distribution function of the matrix \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) about the Stieltjes transform \({{m}_{{{\text{sc}}}}}(z)\) of Wigner’s semicircle law are of order (n\({v}\))\(^{{ - 1}}\text{ln}n\). An application of the result obtained to the convergence rate in probability of the empirical spectral distribution function of \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) to Wigner’s semicircle law in the uniform metric is discussed.

Авторлар туралы

F. Götze

University of Bielefeld

Email: anaumov@hse.ru
Германия, Bielefeld

A. Naumov

National Research University Higher School of Economics; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: anaumov@hse.ru
Ресей, Moscow, 101000; Moscow, 127994

A. Tikhomirov

National Research University Higher School of Economics; Komi Center of Science, Ural Branch, Russian Academy
of Sciences

Email: anaumov@hse.ru
Ресей, Moscow, 101000; Syktyvkar

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019