On Optimal Bounds in the Local Semicircle Law under Four Moment Condition
- 作者: Götze F.1, Naumov A.A.2,3, Tikhomirov A.N.2,4
-
隶属关系:
- University of Bielefeld
- National Research University Higher School of Economics
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Komi Center of Science, Ural Branch, Russian Academy of Sciences
- 期: 卷 99, 编号 1 (2019)
- 页面: 40-43
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225617
- DOI: https://doi.org/10.1134/S1064562419010125
- ID: 225617
如何引用文章
详细
We consider symmetric random matrices \({{{\mathbf{X}}}_{n}} = [{{X}_{{jk}}}]_{{j,k = 1}}^{n},n \geqslant 1\), whose upper triangular entries are independent random variables with zero mean and unit variance. Under the assumption \(\mathbb{E}{\text{|}}{{X}_{{jk}}}{{{\text{|}}}^{4}} < C\), j, k = 1, 2, ..., n, it is shown that the fluctuations of the Stieltjes transform mn(z), \(z = u + i{v},{v} > 0,\) of the empirical spectral distribution function of the matrix \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) about the Stieltjes transform \({{m}_{{{\text{sc}}}}}(z)\) of Wigner’s semicircle law are of order (n\({v}\))\(^{{ - 1}}\text{ln}n\). An application of the result obtained to the convergence rate in probability of the empirical spectral distribution function of \({{{\mathbf{X}}}_{n}}{\text{/}}\sqrt n \) to Wigner’s semicircle law in the uniform metric is discussed.
作者简介
F. Götze
University of Bielefeld
Email: anaumov@hse.ru
德国, Bielefeld
A. Naumov
National Research University Higher School of Economics; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: anaumov@hse.ru
俄罗斯联邦, Moscow, 101000; Moscow, 127994
A. Tikhomirov
National Research University Higher School of Economics; Komi Center of Science, Ural Branch, Russian Academyof Sciences
Email: anaumov@hse.ru
俄罗斯联邦, Moscow, 101000; Syktyvkar
补充文件
