Representations of regularized determinants of exponentials of differential operators by functional integrals


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Representations of regularized determinants of elements of one-parameter operator semigroups whose generators are second-order elliptic differential operators by Lagrangian functional integrals are obtained. Such semigroups describe solutions of inverse Kolmogorov equations for diffusion processes. For self-adjoint elliptic operators, these semigroups are often called Schrödinger semigroups, because they are obtained by means of analytic continuation from Schrödinger groups. It is also shown that the regularized determinant of the exponential of the generator (this exponential is an element of a one-parameter semigroup) coincides with the exponential of the regularized trace of the generator.

Sobre autores

V. Sadovnichii

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
Rússia, Moscow, 119991

O. Smolyanov

Mechanics and Mathematics Faculty

Autor responsável pela correspondência
Email: smolyanov@yandex.ru
Rússia, Moscow, 119991

E. Shavgulidze

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016