Representations of regularized determinants of exponentials of differential operators by functional integrals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Representations of regularized determinants of elements of one-parameter operator semigroups whose generators are second-order elliptic differential operators by Lagrangian functional integrals are obtained. Such semigroups describe solutions of inverse Kolmogorov equations for diffusion processes. For self-adjoint elliptic operators, these semigroups are often called Schrödinger semigroups, because they are obtained by means of analytic continuation from Schrödinger groups. It is also shown that the regularized determinant of the exponential of the generator (this exponential is an element of a one-parameter semigroup) coincides with the exponential of the regularized trace of the generator.

作者简介

V. Sadovnichii

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
俄罗斯联邦, Moscow, 119991

O. Smolyanov

Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: smolyanov@yandex.ru
俄罗斯联邦, Moscow, 119991

E. Shavgulidze

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016