Representations of regularized determinants of exponentials of differential operators by functional integrals
- Авторлар: Sadovnichii V.A.1, Smolyanov O.G.1, Shavgulidze E.T.1
-
Мекемелер:
- Mechanics and Mathematics Faculty
- Шығарылым: Том 93, № 1 (2016)
- Беттер: 46-48
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223366
- DOI: https://doi.org/10.1134/S1064562416010166
- ID: 223366
Дәйексөз келтіру
Аннотация
Representations of regularized determinants of elements of one-parameter operator semigroups whose generators are second-order elliptic differential operators by Lagrangian functional integrals are obtained. Such semigroups describe solutions of inverse Kolmogorov equations for diffusion processes. For self-adjoint elliptic operators, these semigroups are often called Schrödinger semigroups, because they are obtained by means of analytic continuation from Schrödinger groups. It is also shown that the regularized determinant of the exponential of the generator (this exponential is an element of a one-parameter semigroup) coincides with the exponential of the regularized trace of the generator.
Негізгі сөздер
Авторлар туралы
V. Sadovnichii
Mechanics and Mathematics Faculty
Email: smolyanov@yandex.ru
Ресей, Moscow, 119991
O. Smolyanov
Mechanics and Mathematics Faculty
Хат алмасуға жауапты Автор.
Email: smolyanov@yandex.ru
Ресей, Moscow, 119991
E. Shavgulidze
Mechanics and Mathematics Faculty
Email: smolyanov@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
