Representations of regularized determinants of exponentials of differential operators by functional integrals


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Representations of regularized determinants of elements of one-parameter operator semigroups whose generators are second-order elliptic differential operators by Lagrangian functional integrals are obtained. Such semigroups describe solutions of inverse Kolmogorov equations for diffusion processes. For self-adjoint elliptic operators, these semigroups are often called Schrödinger semigroups, because they are obtained by means of analytic continuation from Schrödinger groups. It is also shown that the regularized determinant of the exponential of the generator (this exponential is an element of a one-parameter semigroup) coincides with the exponential of the regularized trace of the generator.

Авторлар туралы

V. Sadovnichii

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
Ресей, Moscow, 119991

O. Smolyanov

Mechanics and Mathematics Faculty

Хат алмасуға жауапты Автор.
Email: smolyanov@yandex.ru
Ресей, Moscow, 119991

E. Shavgulidze

Mechanics and Mathematics Faculty

Email: smolyanov@yandex.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016