Representations of regularized determinants of exponentials of differential operators by functional integrals
- Авторы: Sadovnichii V.A.1, Smolyanov O.G.1, Shavgulidze E.T.1
-
Учреждения:
- Mechanics and Mathematics Faculty
- Выпуск: Том 93, № 1 (2016)
- Страницы: 46-48
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223366
- DOI: https://doi.org/10.1134/S1064562416010166
- ID: 223366
Цитировать
Аннотация
Representations of regularized determinants of elements of one-parameter operator semigroups whose generators are second-order elliptic differential operators by Lagrangian functional integrals are obtained. Such semigroups describe solutions of inverse Kolmogorov equations for diffusion processes. For self-adjoint elliptic operators, these semigroups are often called Schrödinger semigroups, because they are obtained by means of analytic continuation from Schrödinger groups. It is also shown that the regularized determinant of the exponential of the generator (this exponential is an element of a one-parameter semigroup) coincides with the exponential of the regularized trace of the generator.
Ключевые слова
Об авторах
V. Sadovnichii
Mechanics and Mathematics Faculty
Email: smolyanov@yandex.ru
Россия, Moscow, 119991
O. Smolyanov
Mechanics and Mathematics Faculty
Автор, ответственный за переписку.
Email: smolyanov@yandex.ru
Россия, Moscow, 119991
E. Shavgulidze
Mechanics and Mathematics Faculty
Email: smolyanov@yandex.ru
Россия, Moscow, 119991
Дополнительные файлы
