Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.

作者简介

Xiaohong Wang

School of Science, Yanshan University

编辑信件的主要联系方式.
Email: xiaohongwangmiao@163.com
中国, Qinhuangdao, 066001

Huaiqin Wu

School of Science, Yanshan University

编辑信件的主要联系方式.
Email: huaiqinwu@ysu.edu.cn
中国, Qinhuangdao, 066001

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019