Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations
- Авторлар: Xiaohong Wang 1, Huaiqin Wu 1
-
Мекемелер:
- School of Science, Yanshan University
- Шығарылым: Том 28, № 4 (2019)
- Беттер: 239-251
- Бөлім: Article
- URL: https://journals.rcsi.science/1060-992X/article/view/195235
- DOI: https://doi.org/10.3103/S1060992X19040064
- ID: 195235
Дәйексөз келтіру
Аннотация
In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.
Авторлар туралы
Xiaohong Wang
School of Science, Yanshan University
Хат алмасуға жауапты Автор.
Email: xiaohongwangmiao@163.com
ҚХР, Qinhuangdao, 066001
Huaiqin Wu
School of Science, Yanshan University
Хат алмасуға жауапты Автор.
Email: huaiqinwu@ysu.edu.cn
ҚХР, Qinhuangdao, 066001
Қосымша файлдар
