Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations
- Авторы: Xiaohong Wang 1, Huaiqin Wu 1
-
Учреждения:
- School of Science, Yanshan University
- Выпуск: Том 28, № 4 (2019)
- Страницы: 239-251
- Раздел: Article
- URL: https://journals.rcsi.science/1060-992X/article/view/195235
- DOI: https://doi.org/10.3103/S1060992X19040064
- ID: 195235
Цитировать
Аннотация
In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.
Об авторах
Xiaohong Wang
School of Science, Yanshan University
Автор, ответственный за переписку.
Email: xiaohongwangmiao@163.com
Китай, Qinhuangdao, 066001
Huaiqin Wu
School of Science, Yanshan University
Автор, ответственный за переписку.
Email: huaiqinwu@ysu.edu.cn
Китай, Qinhuangdao, 066001
Дополнительные файлы
