Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.

Sobre autores

Xiaohong Wang

School of Science, Yanshan University

Autor responsável pela correspondência
Email: xiaohongwangmiao@163.com
República Popular da China, Qinhuangdao, 066001

Huaiqin Wu

School of Science, Yanshan University

Autor responsável pela correspondência
Email: huaiqinwu@ysu.edu.cn
República Popular da China, Qinhuangdao, 066001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019