Global Mittag-Leffler Stability of Fractional Hopfield Neural Networks with δ-Inverse Hölder Neuron Activations
- Autores: Xiaohong Wang 1, Huaiqin Wu 1
-
Afiliações:
- School of Science, Yanshan University
- Edição: Volume 28, Nº 4 (2019)
- Páginas: 239-251
- Seção: Article
- URL: https://journals.rcsi.science/1060-992X/article/view/195235
- DOI: https://doi.org/10.3103/S1060992X19040064
- ID: 195235
Citar
Resumo
In this paper, the global Mittag-Leffler stability of fractional Hopfield neural networks (FHNNs) with \(\delta \)-inverse hölder neuron activation functions are considered. By applying the Brouwer topological degree theory and inequality analysis techniques, the proof of the existence and uniqueness of equilibrium point is addressed. By constructing the Lure’s Postnikov-type Lyapunov functions, the global Mittag-Leffler stability conditions are achieved in terms of linear matrix inequalities (LMIs). Finally, three numerical examples are given to verify the validity of the theoretical results.
Sobre autores
Xiaohong Wang
School of Science, Yanshan University
Autor responsável pela correspondência
Email: xiaohongwangmiao@163.com
República Popular da China, Qinhuangdao, 066001
Huaiqin Wu
School of Science, Yanshan University
Autor responsável pela correspondência
Email: huaiqinwu@ysu.edu.cn
República Popular da China, Qinhuangdao, 066001
Arquivos suplementares
