Molecular Dynamic Simulation of Silicon Irradiation with 2–8 keV Buckminsterfullerene C60 Ions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The processes taking place on the (100)Si surface irradiated by 2–8 keV buckminsterfullerene C60 ions at temperatures ranging from 0 to 700 K are examined using molecular dynamics computer simulations. Tersoff-ZBL and Airebo potentials are used to describe pairwise interactions, inelastic energy loss is taken into account for fast atoms. The results show that crystal temperature has no influence on the collision cascade development, but affect its thermalisation and crater formation on the surface. With the C60 ion energy increase, carbon atoms penetrate deeper into the target, both crater volume and size of the rim around it enlarges. Temperature increase to 700 K leads to more effective crater and rim formation comparing to 0 and 300 K cases. We propose possible explanation of the revealed phenomenon.

Sobre autores

K. Karasev

Academic university named after Alferov

Autor responsável pela correspondência
Email: kir.karasyov2017@yandex.ru
Russia, 195251, Saint-Petersburg

D. Strizhkin

Polytechnic university named after Peter the Great

Email: platon.karaseov@spbstu.ru
Russia, 195251, Saint-Petersburg

A. Titov

Polytechnic university named after Peter the Great

Email: platon.karaseov@spbstu.ru
Russia, 195251, Saint-Petersburg

P. Karaseov

Polytechnic university named after Peter the Great

Autor responsável pela correspondência
Email: platon.karaseov@spbstu.ru
Russia, 195251, Saint-Petersburg

Bibliografia

  1. Zhang J., Terrones M., Park C.R., Mukherjee R, Monthioux M., Koratkar N., Kim Y. S., Hurt R., Frackowiak E., Enoki T., Chen Y., Chen Y., Bianco A. // Carbon Science in 2016: Status, Challenges and Perspectives Carbon. 2016. V. 98. P. 708. https://doi.org/10.1016/j.carbon.2015.11.060
  2. Бочвар Д.А., Гальперн Э.Г. // Доклады Академии Наук СССР. 1973. Т. 209. С. 610.
  3. Robertson J. // Mater. Sci. Eng. Res. 2002. V. 37. P. 129. https://doi.org/10.1016/S0927-796X(02)00005-0
  4. Khadem M., Pukha V.E., Penkov O.V. et al. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://doi.org/10.1016/j.surfcoat.2021.127670
  5. Pukha V.E., Pugachov A.T., Churakova N.P., Zubarev E.N., Vinogradov V.E., Nam S.C. // J. Nanosci. Nanotechnol. 2012. V. 12. № 6. P. 4762. https://doi.org/10.1166/jnn.2012.4925
  6. Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M.V., Kim D.E. // Biomaterials. 2016. V. 102. P. 130. https://doi.org/10.1016/j.biomaterials.2016.06.029
  7. Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984. 135 с.
  8. Postawa Z., Czerwinski B., Szewczyk M., Smiley E.J., Winograd N., Garrison B.J. // Anal. Chem. 2003. V. 75. P. 4402. https://doi.org/10.1021/ac034387a
  9. Delcorte A., Garrison B.J. // J. Phys. Chem. 2007. V. 111. P. 15312. https://doi.org/10.1021/jp074536j
  10. Krantzman K.D., Kingsbury D.B., Garrison B.J. // Appl. Surf. Sci. 2006. V. 252. P. 6463. https://doi.org/10.1016/j.apsusc.2006.02.276
  11. Krantzman K.D., Garrison B.J. // Surf. Interface Anal. 2011. V. 43. P. 123. https://doi.org/10.1002/sia.3438
  12. Krantzman K.D., Wucher A. // J. Phys. Chem. C. 2010. V. 114. № 12. P. 5480.https://doi.org/10.1021/jp906050f
  13. Малеев М.В., Зубарев Е.Н., Пуха В.Е., Дроздов А.Н., Вус А.С., Девизенко А.Ю. // ФИП. 2015. Т. 13. С. 91. https://doi.org/10.15407/mfint.37.06.0775
  14. Pukha V., Popova J., Khadem M., Dae-Eun Kim, Khodos I., Shakhmin A., Mishin M., Krainov K., Titov A., Karaseov P. // Formation of Functional Conductive Carbon Coating on Si by C60 Ion Beam. In: International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics. 2020. V. 255 / Ed. Velichko E. et al., Springer, Cham. https://doi.org/10.1007/978-3-030-58868-7_15
  15. Pukha V., Belmesov A., Glukhov A., Khodos I., Khadem M., Kim D.-E., Krainov K., Shakhmin A., Karaseov P. // Features of the Conductive Carbon Coatings Formation on Titanium Electrodes Using C60 Ion Beams. In: International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics. 2022. V. 268 / Ed. Velichko E., Kapralova V., Karaseov P., et al., Springer, Cham. https://doi.org/10.1007/978-3-030-81119-8_41
  16. Thompson A.P., Aktulga H.M., Berger R. et al. // Comp. Phys. Comm. 2022. V. 271. P. 10817. https://doi.org/10.1016/j.cpc.2021.108171
  17. Stuart S.J., Tutein A.B., Harrison J.A. // J. Chem. Phys. 2000. V. 112. P. 6472. https://doi.org/10.1063/1.481208
  18. Tersoff J. // Phys. Rev. B. 1988. V. 37. P. 6991. https://doi.org/10.1103/PhysRevB.37.6991
  19. Ziegler J.F., Biersack J.P. // The Stopping and Range of Ions in Matter. In: Treatise on Heavy-Ion Science / Ed. Bromley D.A. Springer, Boston, MA, 1985
  20. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
  21. Aurenhammer F. // ACM Computing Surveys. 1991. V. 23. № 3. P. 345. https://doi.org/10.1145/116873.116880
  22. Ullah M.W., Kuronen A., Nordlund K., Djurabekova F., Karaseov P.A., Titov A.I. // J. Appl. Phys. 2012. V. 112. P. 043517. https://doi.org/10.1063/1.4747917
  23. Aoki T. // J. Comput. Electron. 2014. V. 13. P. 108. https://doi.org/10.1007/s10825-013-0504-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (976KB)
3.

Baixar (114KB)
4.

Baixar (60KB)
5.

Baixar (56KB)
6.

Baixar (134KB)

Declaração de direitos autorais © К.П. Карасев, Д.А. Стрижкин, А.И. Титов, П.А. Карасев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies