Interaction of Titanium Atoms with the Surface of Perfect and Defective Carbon Nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dispersion of metal atoms over the surface of 1D and 2D carbon systems is the most affordable way to control their properties, which are attractive for many applications in electronics, power engineering, and catalysis. In this work, the features of the interaction of titanium atoms with the surface of carbon nanotubes, caused by various structural defects on these surfaces, were studied by first-principles computer simulation based on the density functional theory. Nanotubes (7, 7) and (11, 0) with similar diameters (≈1 nm) but different types of conductivity, metallic and semiconductor, respectively, were chosen for the study. Three types of defects were studied: a single vacancy, a double vacancy, and a topological defect. Two possible orientations of each type of defect relative to the tube axis were considered. We mainly used the basis of atomic-like orbitals (the SIESTA package) and in some test calculations also the basis of plane waves (the VASP package). Computational experiments have shown that the binding energy of Ti atoms with a defect-free nanotube is always lower than with defective ones, regardless of the used approximation for the exchange-correlation functional (LDA or GGA). The binding energies predicted in the LDA approximation are noticeably higher than in the GGA approximation (up to ~15% for the (7, 7) tube and up to ~50% for the (11, 0) tube). The strongest coupling occurs when the titanium atom is adsorbed on a nanotube with a single vacancy. The resulting configuration can be considered as a defect in the substitution of one carbon by a titanium atom.

About the authors

S. A. Sozykin

Physics of Nanoscale Systems Department, South Ural State University

Author for correspondence.
Email: sozykinsa@susu.ru
Russian Federation, Chelyabinsk

V. P. Beskachko

Physics of Nanoscale Systems Department, South Ural State University

Email: sozykinsa@susu.ru
Russian Federation, Chelyabinsk

References

  1. Maheswaran R., Shanmugavel B.P. // J. Electron. Mater. 2022. V. 51. № 6. P. 2786. https://doi.org./10.1007/s11664-022-09516-8
  2. So S.H., Sung S.J., Yang S.J., Park C.R. // Electron. Mater. Lett. 2023. V. 19. № 1. P. 1. https://doi.org./10.1007/s13391-022-00368-2
  3. Mulatu A.T., Nigussa K.N., Deja L.D. // Opt. Mater. 2022. V. 134. P. 113094. https://doi.org./10.1016/j.optmat.2022.113094
  4. Dethan J.F.N., Swamy V. // Int. J. Hydrog. Energy. 2022. V. 47. № 59. P. 24916. https://doi.org./10.1016/j.ijhydene.2022.05.240
  5. Daulbayev C., Lesbayev B., Bakbolat B., Kaidar B., Sultanov F., Yeleuov M., Ustayeva G., Rakhymzhan N. // South African J. Chem. Eng. 2022. V. 39. P. 52. https://doi.org./10.1016/j.sajce.2021.11.008
  6. Zhang Y., Dai H. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3015. https://doi.org./10.1063/1.1324731
  7. Durgun E., Dag S., Bagci V. M. K., Gulseren O., Yildirim T., Ciraci S. // Phys. Rev. B. 2003. V. 67. P. 201401(R). https://doi.org./10.1103/PhysRevB.67.201401
  8. Liu M., Kutana A., Liu Y., Cui G., Zhang C., Dong N., Chen C., Han P. // J. Phys. Chem. Lett. 2014. V. 5. № 7. P. 1225. https://doi.org./10.1021/jz500199d
  9. Shevlin S.A., Guo Z.X. // J. Phys. Chem. C. 2008. V. 112. № 44. P. 17456. https://doi.org./10.1021/jp800074n
  10. Lee H., Ihm J., Cohen M.L., Louie S.G. // Phys. Rev. B. 2009. V. 80. № 11. P. 115412. https://doi.org./10.1103/PhysRevB.80.115412
  11. Ghosh S., Padmanabhan V. // Diam. Relat. Mater. 2017. V. 77. P. 46. https://doi.org./10.1016/j.diamond.2017.05.013
  12. Yang L., Yu L.L., Wei H.W., Li W.Q., Zhou X., Tian W.Q. // Int. J. Hydrog. Energy. 2019. V. 44. № 5. P. 2960. https://doi.org./10.1016/j.ijhydene.2018.12.028
  13. Soldano C. // Prog. Mater. Sci. 2015. V. 69. P. 183. https://doi.org./10.1016/j.pmatsci.2014.11.001
  14. Sozykin S.A., Beskachko V.P., Vyatkin G.P. // Mater. Sci. Forum. 2016. V. 843. P. 132. https://doi.org./10.4028/www.scientific.net/MSF.843.132
  15. Soler J.M., Artacho E., Gale J.D., Garc A., Junquera J., Ordej P., Daniel S. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://doi.org./10.1088/0953-8984/14/11/302
  16. Anikina E., Beskachko V. // Bull. South Ural State Univ. Ser. Math. Mech. Phys. 2020. V. 12. № 1. P. 55. https://doi.org./10.14529/mmph200107
  17. Sozykin S.A., Beskachko V.P. // Lett. Mater. 2022. V. 12. № 1. P. 32. https://doi.org./10.22226/2410-3535-2022-1-32-36
  18. Yildirim T., Ciraci S. // Phys. Rev. Lett. 2005. V. 94. № 17. P. 175501. https://doi.org./10.1103/PhysRevLett.94.175501
  19. Omidvar H., Mirzaei F.K., Rahimi M.H., Sadeghian Z. // New Carbon Mater. 2012. V. 27. № 6. P. 401. https://doi.org./10.1016/S1872-5805(12)60023-7
  20. Juhee D., Vikram M., Alok S., Brahmananda C. // Energy Storage. 2023. V. 5. № 1. P. e391. https://doi.org./10.1002/est2.391
  21. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. Iss. 16. P. 11169. https://doi.org./10.1103/PhysRevB.54.11169
  22. Felten A., Suarez-Martinez I., Ke X., Tendeloo G.V., Ghijsen J., Pireaux J.J., Drube W., Bittencourt C., Ewels C.P. // ChemPhysChem. 2009. V. 10. № 11. P. 1799. https://doi.org./10.1002/cphc.200900193
  23. Yang C.K., Zhao J., Lu J.P. // Phys. Rev. B. 2002. V. 66. № 4. P. 414031. https://doi.org./10.1103/PhysRevB.66.041403

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Atomic structure of defect-free CNTs (11, 0) (a) and (7, 7) (b)

Download (323KB)
3. Fig. 2. Equilibrium atomic structure of complexes of defective nanotube with titanium atom. Carbon atoms belonging to the defect are highlighted in darker color. The defect designations are described in the text

Download (835KB)
4. Fig. 3. Defect formation energy depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Download (304KB)
5. Fig. 4. Binding energy of Ti atom with the tube depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Download (427KB)
6. Fig. 5. ELDA/EGGA ratio for energy: a - defect formation; b - Ti atom bonding

Download (265KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies