Interaction of Titanium Atoms with the Surface of Perfect and Defective Carbon Nanotubes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The dispersion of metal atoms over the surface of 1D and 2D carbon systems is the most affordable way to control their properties, which are attractive for many applications in electronics, power engineering, and catalysis. In this work, the features of the interaction of titanium atoms with the surface of carbon nanotubes, caused by various structural defects on these surfaces, were studied by first-principles computer simulation based on the density functional theory. Nanotubes (7, 7) and (11, 0) with similar diameters (≈1 nm) but different types of conductivity, metallic and semiconductor, respectively, were chosen for the study. Three types of defects were studied: a single vacancy, a double vacancy, and a topological defect. Two possible orientations of each type of defect relative to the tube axis were considered. We mainly used the basis of atomic-like orbitals (the SIESTA package) and in some test calculations also the basis of plane waves (the VASP package). Computational experiments have shown that the binding energy of Ti atoms with a defect-free nanotube is always lower than with defective ones, regardless of the used approximation for the exchange-correlation functional (LDA or GGA). The binding energies predicted in the LDA approximation are noticeably higher than in the GGA approximation (up to ~15% for the (7, 7) tube and up to ~50% for the (11, 0) tube). The strongest coupling occurs when the titanium atom is adsorbed on a nanotube with a single vacancy. The resulting configuration can be considered as a defect in the substitution of one carbon by a titanium atom.

Авторлар туралы

S. Sozykin

Physics of Nanoscale Systems Department, South Ural State University

Хат алмасуға жауапты Автор.
Email: sozykinsa@susu.ru
Ресей, Chelyabinsk

V. Beskachko

Physics of Nanoscale Systems Department, South Ural State University

Email: sozykinsa@susu.ru
Ресей, Chelyabinsk

Әдебиет тізімі

  1. Maheswaran R., Shanmugavel B.P. // J. Electron. Mater. 2022. V. 51. № 6. P. 2786. https://doi.org./10.1007/s11664-022-09516-8
  2. So S.H., Sung S.J., Yang S.J., Park C.R. // Electron. Mater. Lett. 2023. V. 19. № 1. P. 1. https://doi.org./10.1007/s13391-022-00368-2
  3. Mulatu A.T., Nigussa K.N., Deja L.D. // Opt. Mater. 2022. V. 134. P. 113094. https://doi.org./10.1016/j.optmat.2022.113094
  4. Dethan J.F.N., Swamy V. // Int. J. Hydrog. Energy. 2022. V. 47. № 59. P. 24916. https://doi.org./10.1016/j.ijhydene.2022.05.240
  5. Daulbayev C., Lesbayev B., Bakbolat B., Kaidar B., Sultanov F., Yeleuov M., Ustayeva G., Rakhymzhan N. // South African J. Chem. Eng. 2022. V. 39. P. 52. https://doi.org./10.1016/j.sajce.2021.11.008
  6. Zhang Y., Dai H. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3015. https://doi.org./10.1063/1.1324731
  7. Durgun E., Dag S., Bagci V. M. K., Gulseren O., Yildirim T., Ciraci S. // Phys. Rev. B. 2003. V. 67. P. 201401(R). https://doi.org./10.1103/PhysRevB.67.201401
  8. Liu M., Kutana A., Liu Y., Cui G., Zhang C., Dong N., Chen C., Han P. // J. Phys. Chem. Lett. 2014. V. 5. № 7. P. 1225. https://doi.org./10.1021/jz500199d
  9. Shevlin S.A., Guo Z.X. // J. Phys. Chem. C. 2008. V. 112. № 44. P. 17456. https://doi.org./10.1021/jp800074n
  10. Lee H., Ihm J., Cohen M.L., Louie S.G. // Phys. Rev. B. 2009. V. 80. № 11. P. 115412. https://doi.org./10.1103/PhysRevB.80.115412
  11. Ghosh S., Padmanabhan V. // Diam. Relat. Mater. 2017. V. 77. P. 46. https://doi.org./10.1016/j.diamond.2017.05.013
  12. Yang L., Yu L.L., Wei H.W., Li W.Q., Zhou X., Tian W.Q. // Int. J. Hydrog. Energy. 2019. V. 44. № 5. P. 2960. https://doi.org./10.1016/j.ijhydene.2018.12.028
  13. Soldano C. // Prog. Mater. Sci. 2015. V. 69. P. 183. https://doi.org./10.1016/j.pmatsci.2014.11.001
  14. Sozykin S.A., Beskachko V.P., Vyatkin G.P. // Mater. Sci. Forum. 2016. V. 843. P. 132. https://doi.org./10.4028/www.scientific.net/MSF.843.132
  15. Soler J.M., Artacho E., Gale J.D., Garc A., Junquera J., Ordej P., Daniel S. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://doi.org./10.1088/0953-8984/14/11/302
  16. Anikina E., Beskachko V. // Bull. South Ural State Univ. Ser. Math. Mech. Phys. 2020. V. 12. № 1. P. 55. https://doi.org./10.14529/mmph200107
  17. Sozykin S.A., Beskachko V.P. // Lett. Mater. 2022. V. 12. № 1. P. 32. https://doi.org./10.22226/2410-3535-2022-1-32-36
  18. Yildirim T., Ciraci S. // Phys. Rev. Lett. 2005. V. 94. № 17. P. 175501. https://doi.org./10.1103/PhysRevLett.94.175501
  19. Omidvar H., Mirzaei F.K., Rahimi M.H., Sadeghian Z. // New Carbon Mater. 2012. V. 27. № 6. P. 401. https://doi.org./10.1016/S1872-5805(12)60023-7
  20. Juhee D., Vikram M., Alok S., Brahmananda C. // Energy Storage. 2023. V. 5. № 1. P. e391. https://doi.org./10.1002/est2.391
  21. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. Iss. 16. P. 11169. https://doi.org./10.1103/PhysRevB.54.11169
  22. Felten A., Suarez-Martinez I., Ke X., Tendeloo G.V., Ghijsen J., Pireaux J.J., Drube W., Bittencourt C., Ewels C.P. // ChemPhysChem. 2009. V. 10. № 11. P. 1799. https://doi.org./10.1002/cphc.200900193
  23. Yang C.K., Zhao J., Lu J.P. // Phys. Rev. B. 2002. V. 66. № 4. P. 414031. https://doi.org./10.1103/PhysRevB.66.041403

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Atomic structure of defect-free CNTs (11, 0) (a) and (7, 7) (b)

Жүктеу (323KB)
3. Fig. 2. Equilibrium atomic structure of complexes of defective nanotube with titanium atom. Carbon atoms belonging to the defect are highlighted in darker color. The defect designations are described in the text

Жүктеу (835KB)
4. Fig. 3. Defect formation energy depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Жүктеу (304KB)
5. Fig. 4. Binding energy of Ti atom with the tube depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Жүктеу (427KB)
6. Fig. 5. ELDA/EGGA ratio for energy: a - defect formation; b - Ti atom bonding

Жүктеу (265KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>