Interaction of Titanium Atoms with the Surface of Perfect and Defective Carbon Nanotubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dispersion of metal atoms over the surface of 1D and 2D carbon systems is the most affordable way to control their properties, which are attractive for many applications in electronics, power engineering, and catalysis. In this work, the features of the interaction of titanium atoms with the surface of carbon nanotubes, caused by various structural defects on these surfaces, were studied by first-principles computer simulation based on the density functional theory. Nanotubes (7, 7) and (11, 0) with similar diameters (≈1 nm) but different types of conductivity, metallic and semiconductor, respectively, were chosen for the study. Three types of defects were studied: a single vacancy, a double vacancy, and a topological defect. Two possible orientations of each type of defect relative to the tube axis were considered. We mainly used the basis of atomic-like orbitals (the SIESTA package) and in some test calculations also the basis of plane waves (the VASP package). Computational experiments have shown that the binding energy of Ti atoms with a defect-free nanotube is always lower than with defective ones, regardless of the used approximation for the exchange-correlation functional (LDA or GGA). The binding energies predicted in the LDA approximation are noticeably higher than in the GGA approximation (up to ~15% for the (7, 7) tube and up to ~50% for the (11, 0) tube). The strongest coupling occurs when the titanium atom is adsorbed on a nanotube with a single vacancy. The resulting configuration can be considered as a defect in the substitution of one carbon by a titanium atom.

Sobre autores

S. Sozykin

Physics of Nanoscale Systems Department, South Ural State University

Autor responsável pela correspondência
Email: sozykinsa@susu.ru
Rússia, Chelyabinsk

V. Beskachko

Physics of Nanoscale Systems Department, South Ural State University

Email: sozykinsa@susu.ru
Rússia, Chelyabinsk

Bibliografia

  1. Maheswaran R., Shanmugavel B.P. // J. Electron. Mater. 2022. V. 51. № 6. P. 2786. https://doi.org./10.1007/s11664-022-09516-8
  2. So S.H., Sung S.J., Yang S.J., Park C.R. // Electron. Mater. Lett. 2023. V. 19. № 1. P. 1. https://doi.org./10.1007/s13391-022-00368-2
  3. Mulatu A.T., Nigussa K.N., Deja L.D. // Opt. Mater. 2022. V. 134. P. 113094. https://doi.org./10.1016/j.optmat.2022.113094
  4. Dethan J.F.N., Swamy V. // Int. J. Hydrog. Energy. 2022. V. 47. № 59. P. 24916. https://doi.org./10.1016/j.ijhydene.2022.05.240
  5. Daulbayev C., Lesbayev B., Bakbolat B., Kaidar B., Sultanov F., Yeleuov M., Ustayeva G., Rakhymzhan N. // South African J. Chem. Eng. 2022. V. 39. P. 52. https://doi.org./10.1016/j.sajce.2021.11.008
  6. Zhang Y., Dai H. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3015. https://doi.org./10.1063/1.1324731
  7. Durgun E., Dag S., Bagci V. M. K., Gulseren O., Yildirim T., Ciraci S. // Phys. Rev. B. 2003. V. 67. P. 201401(R). https://doi.org./10.1103/PhysRevB.67.201401
  8. Liu M., Kutana A., Liu Y., Cui G., Zhang C., Dong N., Chen C., Han P. // J. Phys. Chem. Lett. 2014. V. 5. № 7. P. 1225. https://doi.org./10.1021/jz500199d
  9. Shevlin S.A., Guo Z.X. // J. Phys. Chem. C. 2008. V. 112. № 44. P. 17456. https://doi.org./10.1021/jp800074n
  10. Lee H., Ihm J., Cohen M.L., Louie S.G. // Phys. Rev. B. 2009. V. 80. № 11. P. 115412. https://doi.org./10.1103/PhysRevB.80.115412
  11. Ghosh S., Padmanabhan V. // Diam. Relat. Mater. 2017. V. 77. P. 46. https://doi.org./10.1016/j.diamond.2017.05.013
  12. Yang L., Yu L.L., Wei H.W., Li W.Q., Zhou X., Tian W.Q. // Int. J. Hydrog. Energy. 2019. V. 44. № 5. P. 2960. https://doi.org./10.1016/j.ijhydene.2018.12.028
  13. Soldano C. // Prog. Mater. Sci. 2015. V. 69. P. 183. https://doi.org./10.1016/j.pmatsci.2014.11.001
  14. Sozykin S.A., Beskachko V.P., Vyatkin G.P. // Mater. Sci. Forum. 2016. V. 843. P. 132. https://doi.org./10.4028/www.scientific.net/MSF.843.132
  15. Soler J.M., Artacho E., Gale J.D., Garc A., Junquera J., Ordej P., Daniel S. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://doi.org./10.1088/0953-8984/14/11/302
  16. Anikina E., Beskachko V. // Bull. South Ural State Univ. Ser. Math. Mech. Phys. 2020. V. 12. № 1. P. 55. https://doi.org./10.14529/mmph200107
  17. Sozykin S.A., Beskachko V.P. // Lett. Mater. 2022. V. 12. № 1. P. 32. https://doi.org./10.22226/2410-3535-2022-1-32-36
  18. Yildirim T., Ciraci S. // Phys. Rev. Lett. 2005. V. 94. № 17. P. 175501. https://doi.org./10.1103/PhysRevLett.94.175501
  19. Omidvar H., Mirzaei F.K., Rahimi M.H., Sadeghian Z. // New Carbon Mater. 2012. V. 27. № 6. P. 401. https://doi.org./10.1016/S1872-5805(12)60023-7
  20. Juhee D., Vikram M., Alok S., Brahmananda C. // Energy Storage. 2023. V. 5. № 1. P. e391. https://doi.org./10.1002/est2.391
  21. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. Iss. 16. P. 11169. https://doi.org./10.1103/PhysRevB.54.11169
  22. Felten A., Suarez-Martinez I., Ke X., Tendeloo G.V., Ghijsen J., Pireaux J.J., Drube W., Bittencourt C., Ewels C.P. // ChemPhysChem. 2009. V. 10. № 11. P. 1799. https://doi.org./10.1002/cphc.200900193
  23. Yang C.K., Zhao J., Lu J.P. // Phys. Rev. B. 2002. V. 66. № 4. P. 414031. https://doi.org./10.1103/PhysRevB.66.041403

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Atomic structure of defect-free CNTs (11, 0) (a) and (7, 7) (b)

Baixar (323KB)
3. Fig. 2. Equilibrium atomic structure of complexes of defective nanotube with titanium atom. Carbon atoms belonging to the defect are highlighted in darker color. The defect designations are described in the text

Baixar (835KB)
4. Fig. 3. Defect formation energy depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Baixar (304KB)
5. Fig. 4. Binding energy of Ti atom with the tube depending on the choice of tube type, defect type, defect orientation on the tube and approximation for describing exchange-correlation effects

Baixar (427KB)
6. Fig. 5. ELDA/EGGA ratio for energy: a - defect formation; b - Ti atom bonding

Baixar (265KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies