The Method for Determining the Exact Single Crystal Orientation with Simultaneous X-Ray Energy Correction Using the Spectrum of Diffraction Losses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The intensity loss of transmitted beam due to parasitic diffraction (glitches) is an inherent property of single-crystal X-ray optics. This effect can lead to a weakening of the radiation, up to its complete disappearance. Therefore, understanding the effect of diffraction loss is essential for any experiments that use single-crystal optics. We present theory of glitch formation and demonstrate its application to experimental data to determine the orientation and cell parameters of optical elements made of the single-crystal diamond. A systematic error was found in determining the absolute energy of X-ray, which occurs due to the wrong monochromator tuning (an error in determining the absolute 2θ angle). The described error very often occurs during the experiment as a result of the fact that determining the absolute 2θ angle of the monochromator crystal is a technically difficult task. Simultaneous determination of the orientation and lattice parameters of the studied sample, together with the compensation of the systematic error in the monochromator tuning, made it possible to significantly improve the accuracy of processing the obtained data.

About the authors

N. B. Klimova

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: klimovanb@gmail.com
Russia, 236014, Kaliningrad

A. A. Snigirev

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: anatoly.snigirev@gmail.com
Russia, 236014, Kaliningrad

References

  1. Dobson B.R., Hasnain S.S., Morrell C., Konigsberger D.C., Pandya K., Kampers F., Van Zuylen P., Van Der Hoek M.J. // Rev. Sci. Instrum. 1989. V. 60. P. 2511. https://doi.org/10.1063/1.1140715
  2. Rowen M., Wong J., Tanaka T. // J. Phys. IV France. 1997. V. 7. P. C2. https://doi.org/10.1051/jp4/1997208
  3. Polikarpov M., Emerich H., Klimova N., Snigireva I., Savin V., Snigirev A. // Phys. Stat. Sol. B. 2018. V. 255. P. 1700229. https://doi.org/10.1002/pssb.201700229
  4. Zhang Q., Polikarpov M., Klimova N., Larsen H.B., Mathiesen R., Emerich H., Thorkildsen G., Snigireva I., Snigirev A. // J. Synchrotron Radiat. 2019. V. 26. № 1. P. 109. https://doi.org/10.1107/S1600577518014856
  5. Bauchspiess K.R., Crozier E.D. // EXAFS and Near Edge Structure III. Springer Proceedings in Physics. V. 2 / Ed. Hodgson K.O., Hedman B., Penner-Hahn J.E. Berlin–Heidelberg: Springer, 1984. P. 514. https://doi.org/10.1007/978-3-642-46522-2
  6. Van Zuylen P., Van Der Hoek M.J. // Proc. SPIE. 1986. V. 0733. P. 248. https://doi.org/10.1117/12.964917
  7. Van Der Laan G., Thole B.T // Nucl. Instrum. Methods Phys. Res. A. 1988. V. 263. P. 515. https://doi.org/10.1016/0168-9002(88)90995-3
  8. Kononenko T.V., Ralchenko V.G., Ashkinazi E.E., Polikarpov M., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Konov V.I. // Appl. Phys. A. 2016. V. 122. P. 1. https://doi.org/10.1007/s00339-016-9683-9
  9. Tang Z., Zheng L., Chu S., Wu M., An P., Zhang L., Hu T. // J. Synchrotron Radiat. 2015. V. 22. P. 1147. https://doi.org/10.1107/S1600577515012345
  10. Monochromator Crystal Glitch Library. Available online: https://www-ssrl.slac.stanford.edu/~xas/glitch/ glitch.html (accessed on 16 March 2021).
  11. Samuel M., Wallace, Marco A.A., Gaillard J.-F. An Algorithm for the Automatic Deglitching of X-Ray Absorption Spectroscopy Data. License CC BY-SA 4.0 2020.
  12. Sutter J.P., Boada R., Bowron D.T., Stepanov S.A., Díaz-Moreno S. // J. Appl. Crystallogr. 2016. V. 49. P. 4. P. 1209. https://doi.org/10.1107/S1600576716009183
  13. Abe H., Aquilanti G., Boada R., Bunker B., Glatzel P., Nachtegaal M., Pascarelli S. // J. Synchrotron Radiat. 2018. V. 25. P. 972. https://doi.org/10.1107/S1600577518006021
  14. Klimova N., Yefanov O., Snigirev A. // AIP Conf. Proc. 2020. V. 2299. P. 060016. https://doi.org/10.1063/5.0030507
  15. Klimova N., Yefanov O., Snigireva I., Snigirev A. // Crystals. 2021. V. 11. № 5. P. 504. https://doi.org/10.3390/cryst11050504
  16. Klimova N., Snigireva I., Snigirev A., Yefanov O. // Crystals. 2021. V. 11. № 12. P. 1561. https://doi.org/10.3390/cryst11121561
  17. Klimova N., Snigireva I., Snigirev A., Yefanov O. // J. Synchrotron Radiat. 2022. V. 29. P. 369. https://doi.org/10.1107/S1600577521013667
  18. Программы для расчета глитчей в монокристаллической рентгеновской оптике: https://github.com/ XrayViz/Glitches.
  19. Yefanov O., Kladko V., Slobodyan M., Polischuk Y. // J. Appl. Crystallogr. 2008. V. 41. P. 647. https://doi.org/10.1107/S0021889808008625
  20. Authier A. // Dynamical Theory of X-Ray Diffraction. Oxford University Press, 2003. P. 661. https://doi.org/10.1093/acprof:oso/9780198528920. 001.0001
  21. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  22. Schroer C.G., Lengler B., Benner B., Kuhlmann M., Guenzler T.F., Tuemmler J., Rau C., Weitkamp T., Snigirev A., Snigireva I. // Proc. SPIE. 2001. V. 4145. P. 274. https://doi.org/10.1117/12.411647
  23. Polikarpov M., Snigireva I., Morse J., Yunkin V., Kuznetsov S., Snigirev A. // J. Synchrotron Radiat. 2015. V. 22. P. 23. https://doi.org/10.1107/S1600577514021742
  24. Micro Usinage Laser. Available online: http://micro-usinage-laser.com/ (accessed on 16 March 2021).
  25. New Diamond Technology. Available online: http:// ndtcompany.com/ (accessed on 16 March 2021).
  26. Element Six Ltd. Available online: https://www.e6.com/ (accessed on 16 March 2021).
  27. Terentyev S., Blank V., Polyakov S., Zholudev S., Snigirev A., Polikarpov M., Kolodziej T., Qian J., Zhou H., Shvyd’ko Y. // Appl. Phys. Lett. 2015. V. 107. P. 111108. https://doi.org/10.1063/1.4931357

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (446KB)
3.

Download (156KB)
4.

Download (365KB)
5.

Download (275KB)

Copyright (c) 2023 Н.Б. Климова, А.А. Снигирев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».