The Method for Determining the Exact Single Crystal Orientation with Simultaneous X-Ray Energy Correction Using the Spectrum of Diffraction Losses

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The intensity loss of transmitted beam due to parasitic diffraction (glitches) is an inherent property of single-crystal X-ray optics. This effect can lead to a weakening of the radiation, up to its complete disappearance. Therefore, understanding the effect of diffraction loss is essential for any experiments that use single-crystal optics. We present theory of glitch formation and demonstrate its application to experimental data to determine the orientation and cell parameters of optical elements made of the single-crystal diamond. A systematic error was found in determining the absolute energy of X-ray, which occurs due to the wrong monochromator tuning (an error in determining the absolute 2θ angle). The described error very often occurs during the experiment as a result of the fact that determining the absolute 2θ angle of the monochromator crystal is a technically difficult task. Simultaneous determination of the orientation and lattice parameters of the studied sample, together with the compensation of the systematic error in the monochromator tuning, made it possible to significantly improve the accuracy of processing the obtained data.

Sobre autores

N. Klimova

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: klimovanb@gmail.com
Russia, 236014, Kaliningrad

A. Snigirev

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: anatoly.snigirev@gmail.com
Russia, 236014, Kaliningrad

Bibliografia

  1. Dobson B.R., Hasnain S.S., Morrell C., Konigsberger D.C., Pandya K., Kampers F., Van Zuylen P., Van Der Hoek M.J. // Rev. Sci. Instrum. 1989. V. 60. P. 2511. https://doi.org/10.1063/1.1140715
  2. Rowen M., Wong J., Tanaka T. // J. Phys. IV France. 1997. V. 7. P. C2. https://doi.org/10.1051/jp4/1997208
  3. Polikarpov M., Emerich H., Klimova N., Snigireva I., Savin V., Snigirev A. // Phys. Stat. Sol. B. 2018. V. 255. P. 1700229. https://doi.org/10.1002/pssb.201700229
  4. Zhang Q., Polikarpov M., Klimova N., Larsen H.B., Mathiesen R., Emerich H., Thorkildsen G., Snigireva I., Snigirev A. // J. Synchrotron Radiat. 2019. V. 26. № 1. P. 109. https://doi.org/10.1107/S1600577518014856
  5. Bauchspiess K.R., Crozier E.D. // EXAFS and Near Edge Structure III. Springer Proceedings in Physics. V. 2 / Ed. Hodgson K.O., Hedman B., Penner-Hahn J.E. Berlin–Heidelberg: Springer, 1984. P. 514. https://doi.org/10.1007/978-3-642-46522-2
  6. Van Zuylen P., Van Der Hoek M.J. // Proc. SPIE. 1986. V. 0733. P. 248. https://doi.org/10.1117/12.964917
  7. Van Der Laan G., Thole B.T // Nucl. Instrum. Methods Phys. Res. A. 1988. V. 263. P. 515. https://doi.org/10.1016/0168-9002(88)90995-3
  8. Kononenko T.V., Ralchenko V.G., Ashkinazi E.E., Polikarpov M., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Konov V.I. // Appl. Phys. A. 2016. V. 122. P. 1. https://doi.org/10.1007/s00339-016-9683-9
  9. Tang Z., Zheng L., Chu S., Wu M., An P., Zhang L., Hu T. // J. Synchrotron Radiat. 2015. V. 22. P. 1147. https://doi.org/10.1107/S1600577515012345
  10. Monochromator Crystal Glitch Library. Available online: https://www-ssrl.slac.stanford.edu/~xas/glitch/ glitch.html (accessed on 16 March 2021).
  11. Samuel M., Wallace, Marco A.A., Gaillard J.-F. An Algorithm for the Automatic Deglitching of X-Ray Absorption Spectroscopy Data. License CC BY-SA 4.0 2020.
  12. Sutter J.P., Boada R., Bowron D.T., Stepanov S.A., Díaz-Moreno S. // J. Appl. Crystallogr. 2016. V. 49. P. 4. P. 1209. https://doi.org/10.1107/S1600576716009183
  13. Abe H., Aquilanti G., Boada R., Bunker B., Glatzel P., Nachtegaal M., Pascarelli S. // J. Synchrotron Radiat. 2018. V. 25. P. 972. https://doi.org/10.1107/S1600577518006021
  14. Klimova N., Yefanov O., Snigirev A. // AIP Conf. Proc. 2020. V. 2299. P. 060016. https://doi.org/10.1063/5.0030507
  15. Klimova N., Yefanov O., Snigireva I., Snigirev A. // Crystals. 2021. V. 11. № 5. P. 504. https://doi.org/10.3390/cryst11050504
  16. Klimova N., Snigireva I., Snigirev A., Yefanov O. // Crystals. 2021. V. 11. № 12. P. 1561. https://doi.org/10.3390/cryst11121561
  17. Klimova N., Snigireva I., Snigirev A., Yefanov O. // J. Synchrotron Radiat. 2022. V. 29. P. 369. https://doi.org/10.1107/S1600577521013667
  18. Программы для расчета глитчей в монокристаллической рентгеновской оптике: https://github.com/ XrayViz/Glitches.
  19. Yefanov O., Kladko V., Slobodyan M., Polischuk Y. // J. Appl. Crystallogr. 2008. V. 41. P. 647. https://doi.org/10.1107/S0021889808008625
  20. Authier A. // Dynamical Theory of X-Ray Diffraction. Oxford University Press, 2003. P. 661. https://doi.org/10.1093/acprof:oso/9780198528920. 001.0001
  21. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  22. Schroer C.G., Lengler B., Benner B., Kuhlmann M., Guenzler T.F., Tuemmler J., Rau C., Weitkamp T., Snigirev A., Snigireva I. // Proc. SPIE. 2001. V. 4145. P. 274. https://doi.org/10.1117/12.411647
  23. Polikarpov M., Snigireva I., Morse J., Yunkin V., Kuznetsov S., Snigirev A. // J. Synchrotron Radiat. 2015. V. 22. P. 23. https://doi.org/10.1107/S1600577514021742
  24. Micro Usinage Laser. Available online: http://micro-usinage-laser.com/ (accessed on 16 March 2021).
  25. New Diamond Technology. Available online: http:// ndtcompany.com/ (accessed on 16 March 2021).
  26. Element Six Ltd. Available online: https://www.e6.com/ (accessed on 16 March 2021).
  27. Terentyev S., Blank V., Polyakov S., Zholudev S., Snigirev A., Polikarpov M., Kolodziej T., Qian J., Zhou H., Shvyd’ko Y. // Appl. Phys. Lett. 2015. V. 107. P. 111108. https://doi.org/10.1063/1.4931357

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (446KB)
3.

Baixar (156KB)
4.

Baixar (365KB)
5.

Baixar (275KB)

Declaração de direitos autorais © Н.Б. Климова, А.А. Снигирев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies