Features of the Effect of a High-Power Ion Beam of Nanosecond Duration on Polyethylene Terephthalate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of formation of surface morphology of polyethylene terephthalate under the influence of high-power ion beam of nanosecond duration have been investigated. It has been established that at a single exposure of such a beam to polyethylene terephthalate, as well as for the majority of other polymers, pores are formed in a near-surface layer, however their quantity is much less. Significant differences begin to appear when the polymer is repeatedly irradiated with a high-power ion beam. For most polymers this leads to an increase in surface porosity and partial local destruction of the near-surface layer. Under such irradiation conditions, various spatial structures are formed on the polyethylene terephthalate surface, the type and sizes of which depend on the number of irradiation pulses. X-ray microanalysis of the near-surface layer showed a significant (1.4 times) decrease of oxygen content after ion irradiation. Irradiation of polyethylene terephthalate by high-power ion beam does not result in the formation of a thin carbon layer on its surface. The possible reasons of formation of such surface morphology under the action of high-power ion beam on polyethylene terephthalate have been considered.

About the authors

V. S. Kovivchak

Dostoevsky Omsk State University; Omsk Scientific Center SB RAS

Author for correspondence.
Email: kvs_docent@mail.ru
Russia, 644077, Omsk; Russia, 644024, Omsk

References

  1. Lin J., Peng Z., Liu Y., Ruiz-Zepeda F., Ye R., Samuel E.L.G., Yacaman M.J., Yakobson B.I., Tour J.M. // Nature Commun. 2014. V. 5. P. 5714. https://www.doi.org/10.1038/ncomms6714
  2. Beckham J.L., Li J.T., Stanford M.G., Chen W., McHugh E.A., Advincula P.A., Wyss K.M., Chyan Y., Boldman W.L., Rack P.D., Tour J.M. // ACS Nano. 2021. V. 15. P. 8976. https://www.doi.org/10.1021/acsnano.1c01843
  3. Zhang Z., Song M., Hao J., Wu K., Li C., Hu C. // Carbon. 2018. V. 127. P. 287. https://www.doi.org/10.1016/j.carbon.2017.11.014
  4. Duy L.X., Peng Z., Li Y., Zhang J., Ji Y., Tour J.M. // Carbon. 2018. V. 126. P. 472. https://www.doi.org/10.1016/j.carbon.2017.10.036
  5. Zaccagnini P., Lamberti A. // Appl. Phys. Lett. 2022. V. 120. P. 100501. https://www.doi.org/10.1063/5.0078707
  6. Obilor A.F., Pacella M., Wilson A., Silberschmidt V.V. // Int. J. Adv. Manuf. Technol. 2022. V. 120. P. 103. https://www.doi.org/10.1007/s00170-022-08731-1
  7. Gutiérrez-Fernández E., Ezquerra T.A., Nogales A., Rebollar E. // Nanomaterials. 2021. V. 11. P. 1123. https://www.doi.org/10.3390/nano11051123
  8. Abd El-Kader M.F.H., Elabbasy M.T., Ahmed M.K., Menazea A.A. // J. Mat. Res. Tech. 2021. V. 13. P. 291. https://www.doi.org/ 10.1016/j.jmrt.2021.04.055
  9. Shivakoti I., Kibria G., Cep R., Pradhan B.B., Sharma A. // Coatings. 2021. V. 11. P. 124. https://www.doi.org/10.3390/coatings11020124
  10. Singh I., George S.M., Tiwari A., Ramkumar J., Balani K. // J. Mat. Res. 2021. V. 36. P. 3985. https://www.doi.org/10.1557/s43578-021-00273-8
  11. Ковивчак В.С., Кряжев Ю.Г., Мартыненко Е.С., Князев Е.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 8. С. 57. https://www.doi.org/10.7868/S0207352815080090
  12. Ковивчак В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 10. С. 97. https://www.doi.org/10.31857/S1028096021100095
  13. Ковивчак В.С., Кряжев Ю.Г., Запевалова Е.С., Лихолобов В.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 61. https://www.doi.org/10.7868/S0207352816040089
  14. Ковивчак В.С., Кряжев Ю.Г., Запевалова Е.С. // Письма в ЖТФ. 2016. Т. 42. В. 3. С. 84. https://www.doi.org/10.1134/S1063785016020103
  15. Kovivchak V.S., Kryazhev Yu.G., Trenikhin M.V., Arbuzov A.B., Zapevalova E.S., Likholobov V.A. // Appl. Surf. Sci. 2018. V. 448. P. 642. https://www.doi.org/10.1016/j.apsusc.2018.04.093
  16. Nistico R. // Polymer Testing. 2020. V. 90. P. 106707. https://www.doi.org/10.1016/j.polymertesting.2020.106707
  17. Xu J., Rong Y., Liu W., Zhang T., Xin G., Huang Y., Wu C. // Micromachines. 2021. V. 12. P. 1356. https://www.doi.org/10.3390/mi12111356
  18. Ursu C., Bordianu I., Dobromir M., Drobota M., Cotofana C., Olaru M., Simionescu B.C. // Rev. Roum. Chim 2012. V. 57. P. 501.
  19. Arenholz E., Kirchnebner A., Klose S., Heitz J., Bauerle D. // Mat. Res. Soc. Symp. Proc. 1998. V. 526. P. 385.
  20. Klose S., Arenholz E., Heitz J., Bäuerle D. // Appl. Phys. A. 1999. V. 69. P. S487. https://www.doi.org/10.1007/s003399900320

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)

Copyright (c) 2023 В.С. Ковивчак

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies