Features of the Effect of a High-Power Ion Beam of Nanosecond Duration on Polyethylene Terephthalate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features of formation of surface morphology of polyethylene terephthalate under the influence of high-power ion beam of nanosecond duration have been investigated. It has been established that at a single exposure of such a beam to polyethylene terephthalate, as well as for the majority of other polymers, pores are formed in a near-surface layer, however their quantity is much less. Significant differences begin to appear when the polymer is repeatedly irradiated with a high-power ion beam. For most polymers this leads to an increase in surface porosity and partial local destruction of the near-surface layer. Under such irradiation conditions, various spatial structures are formed on the polyethylene terephthalate surface, the type and sizes of which depend on the number of irradiation pulses. X-ray microanalysis of the near-surface layer showed a significant (1.4 times) decrease of oxygen content after ion irradiation. Irradiation of polyethylene terephthalate by high-power ion beam does not result in the formation of a thin carbon layer on its surface. The possible reasons of formation of such surface morphology under the action of high-power ion beam on polyethylene terephthalate have been considered.

Sobre autores

V. Kovivchak

Dostoevsky Omsk State University; Omsk Scientific Center SB RAS

Autor responsável pela correspondência
Email: kvs_docent@mail.ru
Russia, 644077, Omsk; Russia, 644024, Omsk

Bibliografia

  1. Lin J., Peng Z., Liu Y., Ruiz-Zepeda F., Ye R., Samuel E.L.G., Yacaman M.J., Yakobson B.I., Tour J.M. // Nature Commun. 2014. V. 5. P. 5714. https://www.doi.org/10.1038/ncomms6714
  2. Beckham J.L., Li J.T., Stanford M.G., Chen W., McHugh E.A., Advincula P.A., Wyss K.M., Chyan Y., Boldman W.L., Rack P.D., Tour J.M. // ACS Nano. 2021. V. 15. P. 8976. https://www.doi.org/10.1021/acsnano.1c01843
  3. Zhang Z., Song M., Hao J., Wu K., Li C., Hu C. // Carbon. 2018. V. 127. P. 287. https://www.doi.org/10.1016/j.carbon.2017.11.014
  4. Duy L.X., Peng Z., Li Y., Zhang J., Ji Y., Tour J.M. // Carbon. 2018. V. 126. P. 472. https://www.doi.org/10.1016/j.carbon.2017.10.036
  5. Zaccagnini P., Lamberti A. // Appl. Phys. Lett. 2022. V. 120. P. 100501. https://www.doi.org/10.1063/5.0078707
  6. Obilor A.F., Pacella M., Wilson A., Silberschmidt V.V. // Int. J. Adv. Manuf. Technol. 2022. V. 120. P. 103. https://www.doi.org/10.1007/s00170-022-08731-1
  7. Gutiérrez-Fernández E., Ezquerra T.A., Nogales A., Rebollar E. // Nanomaterials. 2021. V. 11. P. 1123. https://www.doi.org/10.3390/nano11051123
  8. Abd El-Kader M.F.H., Elabbasy M.T., Ahmed M.K., Menazea A.A. // J. Mat. Res. Tech. 2021. V. 13. P. 291. https://www.doi.org/ 10.1016/j.jmrt.2021.04.055
  9. Shivakoti I., Kibria G., Cep R., Pradhan B.B., Sharma A. // Coatings. 2021. V. 11. P. 124. https://www.doi.org/10.3390/coatings11020124
  10. Singh I., George S.M., Tiwari A., Ramkumar J., Balani K. // J. Mat. Res. 2021. V. 36. P. 3985. https://www.doi.org/10.1557/s43578-021-00273-8
  11. Ковивчак В.С., Кряжев Ю.Г., Мартыненко Е.С., Князев Е.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 8. С. 57. https://www.doi.org/10.7868/S0207352815080090
  12. Ковивчак В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 10. С. 97. https://www.doi.org/10.31857/S1028096021100095
  13. Ковивчак В.С., Кряжев Ю.Г., Запевалова Е.С., Лихолобов В.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 61. https://www.doi.org/10.7868/S0207352816040089
  14. Ковивчак В.С., Кряжев Ю.Г., Запевалова Е.С. // Письма в ЖТФ. 2016. Т. 42. В. 3. С. 84. https://www.doi.org/10.1134/S1063785016020103
  15. Kovivchak V.S., Kryazhev Yu.G., Trenikhin M.V., Arbuzov A.B., Zapevalova E.S., Likholobov V.A. // Appl. Surf. Sci. 2018. V. 448. P. 642. https://www.doi.org/10.1016/j.apsusc.2018.04.093
  16. Nistico R. // Polymer Testing. 2020. V. 90. P. 106707. https://www.doi.org/10.1016/j.polymertesting.2020.106707
  17. Xu J., Rong Y., Liu W., Zhang T., Xin G., Huang Y., Wu C. // Micromachines. 2021. V. 12. P. 1356. https://www.doi.org/10.3390/mi12111356
  18. Ursu C., Bordianu I., Dobromir M., Drobota M., Cotofana C., Olaru M., Simionescu B.C. // Rev. Roum. Chim 2012. V. 57. P. 501.
  19. Arenholz E., Kirchnebner A., Klose S., Heitz J., Bauerle D. // Mat. Res. Soc. Symp. Proc. 1998. V. 526. P. 385.
  20. Klose S., Arenholz E., Heitz J., Bäuerle D. // Appl. Phys. A. 1999. V. 69. P. S487. https://www.doi.org/10.1007/s003399900320

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2MB)

Declaração de direitos autorais © В.С. Ковивчак, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies