Demyelinating disease in a patient with cerebral venous thrombosis and covid-19 clinical manifestations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Actually, verifying neurological disorders associated with COVID-19 make clinicians ask several questions: the manifestation of neurological pathology is due to COVID-19, or there is a combination of several CNS pathologies with COVID-19. We report a clinical case of a 57-year-old female patient with demyelinating disease of the central nervous system, cerebral venous thrombosis associated with clinically transferred COVID-19. Differential diagnosis was performed with multiple sclerosis, acute multiple encephalomyelitis, opticomyelitis, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, sarcoidosis, antiphospholipid syndrome, mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and thrombosis veins of the large hemispheres. Probable pathogenetic variants of demyelination development and possible connection with cerebral venous thrombosis and COVID-19 are highlighted.

About the authors

Yelena G. Klocheva

North-Western State Medical University named after I.I. Mechnikov

Email: klocheva@mail.ru
ORCID iD: 0000-0001-6814-0454

M.D, Dr. Sci. (Med.), Professor

Russian Federation, St. Petersburg

Farakhnoz Z. Olimova

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: farahnoz.zafarovna1994@gmail.com
ORCID iD: 0000-0003-2239-0073
SPIN-code: 5339-9323

postgraduate student

Russian Federation, St. Petersburg

Vitalii V. Goldobin

North-Western State Medical University named after I.I. Mechnikov

Email: Goldobin@szgmu.ru
ORCID iD: 0000-0001-9245-8067
SPIN-code: 4344-5782

M.D., Dr. Sci. (Med.), Professor

Russian Federation, St. Petersburg

Julia D. Bogatenkova

City Consulting and Diagnostic Center No. 1

Email: gkdc1@zdrav.spb.ru
ORCID iD: 0000-0002-0101-715X

M.D. Cand. Sci. (Med), Head of the Stroke Prevention Center

Russian Federation, Saint-Petersburg

References

  1. Mao L, Jin H, Wang M et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127.
  2. Han H, Ma Q, Li C et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130.
  3. Petkovic F, Castellano B. The role of interleukin-6 in central nervous system demyelination. Neural Regen Res. 2016;11(12):1922.
  4. Ghosh R, Roy D, Mandal A et al. Cerebral venous thrombosis in COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2021;15(3):1039–1045.
  5. Bikdeli B, Madhavan MV, Jimenez D et al. Global COVID-19 thrombosis collaborative group. J Am Coll Cardiol. 2020;75(23):2950e73. doi: 10.1016/j.jacc.2020.04.031.
  6. Rae-Grant AD, Wong C, Bernatowicz R et al. Observations on the brain vasculature in multiple sclerosis: a historical perspective. Mult Scler Relat Disord. 2014;3:156–162.
  7. Haacke EM, Yulin Ge, Sean KS et al. An overview of venous abnormalities related to the development of lesions in multiple sclerosis. Frontiers in Neurology. 2021;12:589.
  8. Adams CWM, Poston RN, Buk SJ et al. Inflammatory vasculitis in multiple sclerosis. J Neurol Sci. 1985;69:269–283. doi: 10.1016/0022-510X(85)90139-X.
  9. Adams CWM. The onset and progression of the lesion in multiple sclerosis. J Neurol Sci. 1975;25:165–182. doi: 10.1016/0022-510X(75)90138-0.
  10. Keith J, Gao FQ, Noor R et al. Collagenosis of the deep medullary veins: An underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction? J Neuropathol Exp Neurol. 2017;76:299–312. doi: 10.1093/jnen/nlx009.
  11. Zamboni P, Galeotti R, Menegatti E et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80:392–399. doi: 10.1136/jnnp.2008.157164.
  12. Zivadinov R, Marr K, Cutter G et al. Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology. 2011;77:138–144. doi: 10.1212/WNL.0b013e318212a901.
  13. Trifan G, Sethi S, Elias S et al. Magnetic resonance imaging signatures of vascular pathology in multiple sclerosis. Neurol Res. 2012;34:780–792. doi: 10.1179/1743132812Y.0000000078.
  14. Veroux P, Giaquinta A, Perricone D et al. Internal jugular veins outflow in patients with multiple sclerosis: A catheter venography study. J Vasc Interv Radiol. 2013;24:1790–1797. doi: 10.1016/j.jvir.2013.08.024.
  15. Lee BB, Baumgartner I, Berlien P et al. Diagnosis and treatment of venous malformations. consensus document of the International Union of Phlebology (IUP): updated 2013. Int Angiol. 2015;34:97–149.
  16. Gadda G, Taibi A, Sisini F et al. A new hemodynamic model for the study of cerebral venous outflow. Am J Physiol Hear Circ Physiol. 2015;308:H217–31. doi: 10.1152/ajpheart.00469.2014.
  17. Toro E, Muller L, Cristini M et al. Impact of jugular vein valve function on cerebral venous haemodynamics. Curr Neurovasc Res. 2015;12:384–397. doi: 10.2174/1567202612666150807112357.
  18. Bagert BA, Marder E, Stüve O. Chronic cerebrospinal venous insufficiency and multiple sclerosis. Arch Neurol. 2011;68(11):1379–1384. doi: 10.1001/archneurol.2011.179. PMID: 21747006.
  19. Graham EM, Stanford MR, Sanders MD et al. A point prevalence study of 150 patients with idiopathic retinal vasculitis: 1. Diagnostic value of ophthalmological features. Br J Ophthalmol. 1989;73:714–721. doi: 10.1136/bjo.73.9.714.
  20. Ginsberg MD, Hedley-Whyte ET, Richardson EP. Hypoxic-ischemic leukoencephalopathy in man. Arch Neurol. 1976;33:5–14. doi: 10.1001/archneur.1976.00500010007002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Mechanisms of development of cerebral venous thrombosis and demyelination

Download (277KB)
3. Figure 2. Hyperintense magnetic resonance lesions on T2-weighted image and FLAIR impulse sequence in the right temporal lobe (B); in the white matter of the frontal lobes

Download (149KB)
4. Figure 3. Magnetic resonance venographic picture: absence of a signal from the blood flow in a significant part of the left transverse sinus (A), which does not allow to exclude thrombosis or slowing of blood flow (B), taking into account the Cor N1 weighted image

Download (216KB)
5. Figure 4. Magnetic resonance venographic features suggestive of a single thrombus in the right transverse sinus (A). However, considering raw data (B) and native T2-weighted image, these changes are arachnoid granulations growing into the sinus (C)

Download (269KB)

Copyright (c) 2022 Klocheva Y.G., Olimova F.Z., Goldobin V.V., Bogatenkova J.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies