Plane Problem of the Theory of Elasticity on the Identification of Nodal Points of a Quadrature Inclusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of detection and identification of an elastic inclusion in an isotropic, linearly elastic plane is considered. It is assumed that constant stresses are set at infinity. It is also assumed that on some closed curve containing an inclusion inside, the acting forces and displacements are known quantities. For the case of quadrature domain occupied by the inclusion, a method for identifying its nodal points has been developed. The developed method is based on the application of the principle of reciprocity. Numerical examples are given.

About the authors

A. V. Kaptsov

Ishlinsky Institute for Problems in Mechanics RAS

Email: shifrin@ipmnet.ru
119526, Moscow, Russia

E. I. Shifrin

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: shifrin@ipmnet.ru
119526, Moscow, Russia

References

  1. Andrieux S., Ben Abda A. Identification of planar cracks by complete overdetermined data: inversion formulae // Inverse Probl. 1996. V. 12. P. 553–563.
  2. Andrieux S., Ben Abda A., Bui H. Reciprocity principle and crack identification // Inverse Probl. 1999. V. 15. P. 59–65.
  3. Goldstein R.V., Shifrin E.I., Shushpannikov P.S. Application of invariant integrals to the problems of defect identification // Int. J. Fract. 2007. V. 147. P. 45–54. https://doi.org/10.1007/978-1-4020-6929-1_6
  4. Шифрин Е.И. Идентификация эллипсоидального дефекта в упругом теле по результатам одного испытания на одноосное растяжение (сжатие) // Изв. РАН. МТТ. 2010. № 3. С. 131–142.
  5. Shifrin E.I., Shushpannikov P.S. Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional // Inverse Probl. 2010. V. 26. 055001. https://doi.org/10.1088/0266-5611/26/5/055001
  6. Shifrin E.I., Shushpannikov P.S. Identification of an ellipsoidal defect in an elastic solid using boundary measurements // Int. J. Solids Struct. 2011. V. 48. № 7–8. P. 1154–1163. https://doi.org/10.1016/j.ijsolstr.2010.12.016
  7. Shifrin E.I., Shushpannikov P.S. Identification of small well-separated defects in an isotropic elastic body using boundary measurements // Int. J. Solids Struct. 2013. V. 50. № 22–23. P. 3707–3716. https://doi.org/ 10.1016/j.ijsolstr.2013.07.009
  8. Shifrin E.I., Kaptsov A.V. Identification of multiple cracks in 2D elasticity by means of the reciprocity principle and cluster analysis // Inverse Probl. 2018. V. 34. 015009. https://doi.org/10.1088/1361-6420/aa9d74
  9. Davis P.J. The Schwarz function and its applications. The Carus Mathematical Monographs 17. Mathematical Association of America. 1974.
  10. Aharonov D., Shapiro H.S. Domains on which analytic functions satisfy quadrature identities // J. d’Analyse Math. 1976. V. 30. P. 39–73.
  11. Gustafsson B. Quadrature identities and the Schottky double // Acta Appl. Math. 1983. V. 1. P. 209–240.
  12. Bell S.R. Quadrature domains and kernel function zipping // Arkiv mat. 2005. V. 43. P. 271–287.
  13. Bell S.R. Density of quadrature domains in one and several complex variables // Complex Var. Elliptic Equ. 2009. V. 54. № 3–4. P. 165–171.
  14. Ameur Y., Helmer M., Tellander F. On the uniqueness problem for quadrature domains // Comput. Methods Funct. Theory. 2021. V. 21. P. 473–504. https://doi.org/10.1007/s40315-021-00373-w
  15. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.
  16. Golub G.H., Milanfar P., Varah J. A stable numerical method for inverting shape from moments // SIAM J. Sci. Comput. 1999. V. 21. № 4. P. 1222–1243. https://doi.org/10.1137/S1064827597328315
  17. El Badia A., Ha-Duong T. An inverse source problem in potential analysis // Inverse Probl. 2000. V. 16. № 3. P. 651–663. https://doi.org/10.1088/0266-5611/16/3/308
  18. Kang H., Lee H. Identification of simple poles via boundary measurements and an application of EIT // Inverse Probl. 2004. V. 20. № 6. P. 1853–1863. https://doi.org/10.1088/0266-5611/20/6/010
  19. Lee S.-Y., Makarov N.G. Topology of quadrature domains // J. Am. Math. Soc. 2016. V. 29. P. 333–369.
  20. Шифрин Е.И., Капцов А.В. Идентификация узловых точек упругого включения в упругой плоскости // Доклады РАН. Математика, информатика, процессы управления. 2023. Т. 509. С. 77–82. https://doi.org/10.31857/S268695432370011X

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (19KB)
3.

Download (63KB)
4.

Download (60KB)
5.

Download (100KB)
6.

Download (61KB)
7.

Download (15KB)
8.

Download (15KB)

Copyright (c) 2023 А.В. Капцов, Е.И. Шифрин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».