Periodic Contact Problems for a Wedge with Friction Forces
- Authors: Pozharskaya E.D.1, Pozharskii D.A.1, Sobol B.V.1
-
Affiliations:
- Don State Technical University, 344000, Rostov-on-Don, Russia
- Issue: No 5 (2023)
- Pages: 170-179
- Section: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/137557
- DOI: https://doi.org/10.31857/S0572329923600056
- EDN: https://elibrary.ru/QACECL
- ID: 137557
Cite item
Abstract
Periodic contact problems for a three-dimensional elastic wedge (a dihedral angle, a half-space and a quarter of space are particular cases), taking into account the Coulomb friction forces in unknown contact areas are considered. One face of the wedge is rigidly fixed, and the other face interacts with an infinite rectilinear chain of identical rigid dies, the axis of the chain is parallel to the edge of the wedge. Friction forces perpendicular or parallel to the edge of the wedge are taken into account. Integral equations are derived in which the series generated by the Cerruti components of the contribution of friction forces are summed exactly. Problems are solved using the method of nonlinear integral equations, which makes it possible to simultaneously determine the contact area and contact pressures. The mechanical characteristics are calculated, the transition from a discrete to a continuous contact area of infinite length is studied.
Keywords
About the authors
E. D. Pozharskaya
Don State Technical University, 344000, Rostov-on-Don, Russia
Email: pozharskaya.elizaveta@rambler.ru
Россия,
Ростов-на-Дону
D. A. Pozharskii
Don State Technical University, 344000, Rostov-on-Don, Russia
Email: pozharda@rambler.ru
Россия,
Ростов-на-Дону
B. V. Sobol
Don State Technical University, 344000, Rostov-on-Don, Russia
Author for correspondence.
Email: b.sobol@mail.ru
Россия,
Ростов-на-Дону
References
- Xu Y., Jackson R.L. Periodic contact problems in plane elasticity: the fracture mechanics approach // ASME J. Trib. 2018. V. 140. № 1. P. 011404. https://doi.org/10.1115/1.4036920
- Пожарский Д.А. Периодические контактные и смешанные задачи теории упругости (обзор) // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. 2021. № 2. С. 22–33. https://doi.org/10.18522/1026-2237-2021-2-22-33
- Горячева И.Г. Периодическая контактная задача для упругого полупространства // ПММ. 1998. Т. 62. № 6. С. 1036–1044.
- Горячева И.Г. Механика фрикционного взаимодействия. М.: Наука, 2001. 478 с.
- Goryacheva I., Yakovenko A. The periodic contact problem for spherical indenters and viscoelastic half-space // Tribol. Int. 2021. V. 161. P. 107078. https://doi.org/10.1016/j.triboint.2021.107078
- Александров В.М. Двоякопериодические контактные задачи для упругого слоя // ПММ. 2002. Т. 66. Вып. 2. С. 308–315.
- Yastrebov V.A. Anciaux G., Molinari J.-F. The contact of elastic regular wavy surfaces revisited // Tribol. Lett. 2014. V. 56. P. 171–183. https://doi.org/10.1007/s11249-014-0395-z
- Золотов Н.Б., Пожарский Д.А. Периодические контактные задачи для полупространства с частично закрепленной границей // ПММ. 2022. Т. 86. Вып. 3. С. 394–403. https://doi.org/10.31857/S0032823522030122
- Goryacheva I.G., Torskaya E.V. Modeling of fatigue wear of a two-layered elastic half-space in contact with periodic system of indenters // Wear. 2010. V. 268. № 11–12. P. 1417–1422. https://doi.org/10.1016/j.wear.2010.02.018
- Солдатенков И.А. Периодическая контактная задача теории упругости. Учет трения, износа и сцепления // ПММ. 2013. Т. 77. Вып. 2. С. 337–351.
- Солдатенков И.А. Пространственная контактная задача для упругого слоя и волнистого штампа при наличии трения и износа // ПММ. 2014. Т. 78. Вып. 1. С. 145–155.
- Goryacheva I.G., Makhovskaya Y. Combined effect of surface microgeometry and adhesion in normal and sliding contacts of elastic bodies // Friction. 2017. V. 5. P. 339–350. https://doi.org/10.1007/s40544-017-0179-1
- Пожарский Д.А. Периодическая контактная задача для упругого клина // ПММ. 2015. Т. 79. Вып. 6. С. 864–872.
- Галанов Б.А. Метод граничных уравнений типа Гаммерштейна для контактных задач теории упругости в случае неизвестных областей контакта // ПММ. 1985. Т. 49. Вып. 5. С. 827–835.
- Пожарский Д.А. Фундаментальные решения статики упругого клина и их приложения. Ростов-на-Дону: ООО “ДГТУ-Принт”, 2019. 312 с.
- Пожарский Д.А. Пространственная контактная задача с трением для упругого клина // ПММ. 2008. Т. 72. Вып. 5. С. 852–860.
- Гельфанд И.М., Шилов Г.Е. Обобщенные функции и действия над ними. М.: Физматгиз, 1959. 470 с.
- Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Элементарные функции. М.: Наука, 1981. 798 с.
- Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Специальные функции. М.: Наука, 1983. 750 с.
Supplementary files
