Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme
- Авторы: Zyuzina N.A.1,2, Ostapenko V.V.1,2
-
Учреждения:
- Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Выпуск: Том 58, № 6 (2018)
- Страницы: 950-966
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179664
- DOI: https://doi.org/10.1134/S0965542518060155
- ID: 179664
Цитировать
Аннотация
Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers \(r \in (0.5,1]\) does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.
Об авторах
N. Zyuzina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Автор, ответственный за переписку.
Email: nzyuzina1992@gmail.com
Россия, Novosibirsk, 630090; Novosibirsk, 630090
V. Ostapenko
Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Автор, ответственный за переписку.
Email: ostapenko_vv@ngs.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
Дополнительные файлы
