Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers \(r \in (0.5,1]\) does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.

Sobre autores

N. Zyuzina

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Autor responsável pela correspondência
Email: nzyuzina1992@gmail.com
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

V. Ostapenko

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Autor responsável pela correspondência
Email: ostapenko_vv@ngs.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018