Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers \(r \in (0.5,1]\) does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.

作者简介

N. Zyuzina

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: nzyuzina1992@gmail.com
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

V. Ostapenko

Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018