Decay of Unstable Strong Discontinuities in the Case of a Convex-Flux Scalar Conservation Law Approximated by the CABARET Scheme
- 作者: Zyuzina N.A.1,2, Ostapenko V.V.1,2
-
隶属关系:
- Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- 期: 卷 58, 编号 6 (2018)
- 页面: 950-966
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179664
- DOI: https://doi.org/10.1134/S0965542518060155
- ID: 179664
如何引用文章
详细
Monotonicity conditions for the CABARET scheme approximating a quasilinear scalar conservation law with a convex flux are obtained. It is shown that the monotonicity of the CABARET scheme for Courant numbers \(r \in (0.5,1]\) does not ensure the complete decay of unstable strong discontinuities. For the CABARET scheme, a difference analogue of an entropy inequality is derived and a method is proposed ensuring the complete decay of unstable strong discontinuities in the difference solution for any Courant number at which the CABARET scheme is stable. Test computations illustrating these properties of the CABARET scheme are presented.
作者简介
N. Zyuzina
Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: nzyuzina1992@gmail.com
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
V. Ostapenko
Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: ostapenko_vv@ngs.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
