The Features of Neural Mechanisms Underlying Visceral Pain Processing in the Basolateral Amygdala of Rats with Post-Inflammatory or Stress-Induced Hyperalgesia

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Increased intestinal pain sensitivity (intestinal hyperalgesia) may be a consequence of intestinal inflammation or experienced stress. Both conditions are thought to be associated with a dysfunction of the basolateral amygdala (BLA), since they are accompanied by it’s neurochemical and molecular rearrangements. However, the accompanying changes in the neuronal mechanisms of BLA-executed control of visceral nociception and their possible specificity for post-inflammatory and stress-induced hyperalgesia remain unclear. The aim of the study was to compare the changes in the functional properties of visceral pain-responsive BLA neurons and their modulation by the infralimbic area of the medial prefrontal cortex (IL) that occur after intestinal inflammation or stress. The work was performed on male Wistar rats: 1) control, 2) subjected to experimental colitis and 3) subjected to prolonged emotional-painful stress. In animals from different groups, in awake state the intestinal hyperalgesia was assessed by recording the noxious colorectal distension (CRD)-induced visceromotor response, and under general anesthesia the microelectrode recording of the background impulse activity of BLA neurons and their responses to CRD before and after IL electrical stimulation was performed. It was found that rats from the postcolitis and stressed groups demonstrate intestinal hyperalgesia, which is more pronounced after stress. The postcolitis state is associated with a decrease, and the stressed state – with an increase in the background activity frequency of BLA neurons. It was shown for the first time that in both cases the BLA neurons that respond to CRD with excitation or inhibition increase their reactivity to the stimulating action of IL. The postcolitis period is characterized by an increase in the IL activating effect on the CRD-inhibited BLA neurons, whereas the poststress period is characterized by an increase in the IL-induced stimulation of excitated and inhibited nociceptive cells. The neuronal alterations revealed in the BLA may lead to the disturbances in the amygdala-executed control of the sensory and emotional components of visceral pain that are inherent to postinflammatory or stress-induced intestinal hyperalgesia, being thus a specific target for the treatment of such conditions in the clinic.

Авторлар туралы

O. Lyubashina

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: lyubashinaoa@infran.ru
St. Petersburg, Russia

D. Mehilyainen

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

I. Sivachenko

Pavlov Institute of Physiology of the Russian Academy of Sciences

St. Petersburg, Russia

Әдебиет тізімі

  1. Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R (2016) The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 22(4): 558–574. https://doi.org/10.5056/jnm16001
  2. Roberts C, Albusoda A, Farmer AD, Aziz Q (2021) Rectal Hypersensitivity in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Crohns Colitis 360 3(3): otab041. https://doi.org/10.1093/crocol/otab041
  3. Bonaz B, Sinniger V, Pellissier S (2024) Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 18: 1458918. https://doi.org/10.3389/fnins.2024.1458918
  4. Lyubashina OA, Sivachenko IB, Panteleev SS (2022) Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 42(2): 389–417. https://doi.org/10.1007/s10571-020-00967-3
  5. Vergnolle N (2008) Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 20 Suppl 1: 73–80. https://doi.org/10.1111/j.1365-2982.2008.01110.x
  6. Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T (2022) Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 19(11): 717–726. https://doi.org/10.1038/s41575-022-00634-6
  7. Staudacher HM, Black CJ, Teasdale SB, Mikocka-Walus A, Keefer L (2023) Irritable bowel syndrome and mental health comorbidity - approach to multidisciplinary management. Nat Rev Gastroenterol Hepatol 20(9): 582–596. https://doi.org/10.1038/s41575-023-00794-z
  8. Farmer AD, Aziz Q (2013) Gut pain & visceral hypersensitivity. Br J Pain 7(1): 39–47. https://doi.org/10.1177/2049463713479229
  9. Mayer EA, Ryu HJ, Bhatt RR (2023) The neurobiology of irritable bowel syndrome. Mol Psychiatry 28(4): 1451–1465. https://doi.org/10.1038/s41380-023-01972-w
  10. Любашина ОА, Пантелеев СС, Ноздрачев АД (2009) Амигдалофугальная модуляция вегетативных центров мозга. Наука, СПб.
  11. Benarroch EE (2012) Central autonomic control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (eds) Primer on the Autonomic Nervous System, 3rd ed. Elsevier, Amsterdam, pp. 9–12. https://doi.org/10.1016/B978-0-12-386525-0.00002-0
  12. Chang X, Zhang H, Chen S (2024) Neural circuits regulating visceral pain. Commun Biol 7(1): 457. https://doi.org/10.1038/s42003-024-06148-y
  13. Любашина ОА, Сиваченко ИБ, Бусьгина ИИ (2021) Амигдалофугальная модуляция висцеральной ноцицептивной трансмиссии в каудальной вентролатеральной ретикулярной области продолговатого мозга крысы в норме и при кишечном воспалении. Рос физиол журнал им ИМ Сеченова 107(10): 1219–1234.
  14. Neugebauer V (2020) Amygdala physiology in pain. Handb Behav Neurosci 26: 101–113. https://doi.org/10.1016/b978-0-12-815134-1.00004-0
  15. Veinante P, Yalcin I, Barrot M (2013) The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 1(1): 9. https://doi.org/10.1186/2049-9256-1-9
  16. Lanters LR, Ohlmann H, Langhorst J, Theysohn N, Engler H, Leenhouwers A, Elsenbruch S (2024) Disease-specific alterations in central fear network engagement during acquisition and extinction of conditioned interoceptive fear in inflammatory bowel disease. Mol Psychiatry 29(11): 3527–3536. https://doi.org/10.1038/s41380-024-02612-7
  17. Mayer EA, Berman S, Suyenobu B, Labus J, Mandelkern MA, Naliboff BD, Chang L (2005) Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115(3): 398–409. https://doi.org/10.1016/j.pain.2005.03.023
  18. Han JS, Neugebauer V (2004) Synaptic plasticity in the amygdala in a visceral pain model in rats. Neurosci Lett 361(1–3): 254–257. https://doi.org/10.1016/j.neulet.2003.12.027
  19. Meerveld BG, Johnson AC (2018) Mechanisms of Stress-induced Visceral Pain. J Neurogastroenterol Motil 24(1): 7–18. https://doi.org/10.5056/jnm17137
  20. Gao F, Huang J, Huang GB, You QL, Yao S, Zhao ST, Liu J, Wu CH, Chen GF, Liu SM, Yu Z, Zhou YL, Ning YP, Liu S, Hu BJ, Sun XD (2023) Elevated prelimbic cortex-to-basolateral amygdala circuit activity mediates comorbid anxiety-like behaviors associated with chronic pain. J Clin Invest 133(9): e166356. https://doi.org/10.1172/JCI166356
  21. Thompson JM, Neugebauer V (2017) Amygdala Plasticity and Pain. Pain Res Manag 2017: 8296501. https://doi.org/10.1155/2017/8296501
  22. Xie Y, Shen Z, Zhu X, Pan Y, Sun H, Xie M, Gong Q, Hu Q, Chen J, Wu Z, Zhou S, Liu B, He X, Liu B, Shao X, Fang J (2024) Infralimbic-basolateral amygdala circuit associated with depression-like not anxiety-like behaviors induced by chronic neuropathic pain and the antidepressant effects of electroacupuncture. Brain Res Bull 218: 111092. https://doi.org/10.1016/j.brainresbull.2024.111092
  23. Xiao Y, Che X, Zhang PA, Xu Q, Zheng H, Xu G-Y (2016) TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Sci Rep 6: 29026. https://doi.org/10.1038/srep29026
  24. Reichmann F, Painsipp E, Holzer P (2013) Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system. PLoS One 8(1): e54811. https://doi.org/10.1371/journal.pone.0054811
  25. Welch MG, Anwar M, Chang CY, Gross KJ, Ruggiero DA, Tamir H, Gershon MD (2010) Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons. Neurogastroenterol Motil 22(6): 654-e202. https://doi.org/10.1111/j.1365-2982.2010.01477.x
  26. Do J, Woo J (2018) From gut to brain: alteration in inflammation markers in the brain of dextran sodium sulfate-induced colitis model mice. Clin Psychopharmacol Neurosci 16(4): 422–433. https://doi.org/10.9758/cpn.2018.16.4.422
  27. Reichmann F, Hassan A, Farzi A, Jain P, Schuligoi R, Holzer P (2015) Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep 5: 9970. https://doi.org/10.1038/srep09970
  28. Cao B, Wang J, Mu L, Poon DC, Li Y (2016) Impairment of decision making associated with disruption of phase-locking in the anterior cingulate cortex in viscerally hypersensitive rats. Exp Neurol 286: 21–31. https://doi.org/10.1016/j.expneurol.2016.09.010
  29. Chen CH, Tsai TC, Wu YJ, Hsu KS (2023) Gastric vagal afferent signaling to the basolateral amygdala mediates anxiety-like behaviors in experimental colitis mice. JCI Insight 8(12): e161874. https://doi.org/10.1172/jci.insight.161874
  30. Duan GB, Wang JW, Sun HH, Dong ZY, Zhang Y, Wang ZX, Chen Y, Chen Y, Huang Y, Xu SC (2024) Overexpression of EphB2 in the basolateral amygdala is crucial for inducing visceral pain sensitization in rats subjected to water avoidance stress. CNS Neurosci Ther 30(2): e14611. https://doi.org/10.1111/cns.14611
  31. Zhang H-H, Meng S-Q, Guo X-Y, Zhang J-L, Zhang W, Chen Y-Y, Lu L, Yang J-L, Xue Y-X (2019) Traumatic Stress Produces Delayed Alterations of Synaptic Plasticity in Basolateral Amygdala. Front Psychol 10: 2394. https://doi.org/10.3389/fpsyg.2019.02394
  32. Zhang JY, Liu TH, He Y, Pan HQ, Zhang WH, Yin XP, Tian XL, Li BM, Wang XD, Holmes A, Yuan TF, Pan BX (2019) Chronic Stress Remodels Synapses in an Amygdala Circuit-Specific Manner. Biol Psychiatry 85(3): 189–201. https://doi.org/10.1016/j.biopsych.2018.06.019
  33. Asim M, Wang H, Waris A, He J (2024) Basolateral amygdala parvalbumin and cholecystokinin-expressing GABAergic neurons modulate depressive and anxiety-like behaviors. Transl Psychiatry 14(1): 418. https://doi.org/10.1038/s41398-024-03135-z
  34. Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 94(6): 548–567. https://doi.org/10.1002/jnr.23690
  35. Li D, Li Y-Ch, Zhu Zh.-Y, Zhang F.-Ch, Zhao Q-Y, Jiang J-H, Shen B, Tang Y, Xu G-Y (2025) The paraventricular thalamus mediates visceral pain and anxiety-like behaviors via two distinct pathways. Neuron 113(1-15): e1-e7. https://doi.org/10.1016/j.neuron.2025.04.019
  36. Chung EK, Bian ZX, Xu HX, Sung JJ (2009) Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17(3): 213–221. https://doi.org/10.1159/000224631
  37. Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152(3): 703–712. https://doi.org/10.1016/j.neuroscience.2007.12.028
  38. Ju T, Naliboff BD, Shih W, Presson AP, Liu C, Gupta A, Mayer EA, Chang L (2020) Risk and Protective Factors Related to Early Adverse Life Events in Irritable Bowel Syndrome. J Clin Gastroenterol 54(1): 63–69. https://doi.org/10.1097/MCG.0000000000001153
  39. Kearney DJ, Kamp KJ, Storms M, Simpson TL (2022) Prevalence of Gastrointestinal Symptoms and Irritable Bowel Syndrome Among Individuals With Symptomatic Posttraumatic Stress Disorder. J Clin Gastroenterol 56(7): 592–596. https://doi.org/10.1097/MCG.0000000000001670
  40. Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS (2019) Systematic review with meta-analysis: The association between post-traumatic stress disorder and irritable bowel syndrome. J Gastroenterol Hepatol 34(1): 68–73. https://doi.org/10.1111/jgh.14446
  41. Sivachenko IB, Pavlova MB, Yaido AI, Shiryaeva NV, Panteleev SS, Dyuzhikova NA, Lyubashina OA (2021) Spike Activity and Genome Instability in Neurons of the Amygdaloid Complex in Rats of Selected Strains with Contrasting Nervous System Arousability in Normal Conditions and Stress. Neurosci Behav Physiol 51: 620–628. https://doi.org/10.1007/s11055-021-01115-0
  42. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3): 795–803.
  43. Lyubashina OA, Sivachenko IB, Sushkevich BM, Busygina II (2023) Opposing effects of 5-HT1A receptor agonist buspirone on supraspinal abdominal pain transmission in normal and visceral hypersensitive rats. J Neurosci Res 101(10): 1555–1571. https://doi.org/10.1002/jnr.25222
  44. Lyubashina OA, Sivachenko IB (2024) The 5-HT3 Receptor-Dependent Facilitatory Influence of the Infralimbic Cortex on the Caudal Ventrolateral Medulla Visceral Pain-Related Neurons and Its Colitis-Associated Changes in Rats. J Evol Biochem Physiol 60(3): 1198–1212. https://doi.org/10.1134/S0022093024030268
  45. Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th ed. Acad Press, London.
  46. Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450(1–2): 153–169. https://doi.org/10.1016/0006-8993(88)91555-7
  47. Suzuki A, Li WM (2007) Changes in heart rate and blood pressure induced by noxious colorectal distension in anesthetized rats. Autonom Neurosci 135(1–2): 51. https://doi.org/10.1016/j.autneu.2007.06.073
  48. Sah P, Faber ES, Lopez De Armenita M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3): 803–834. https://doi.org/10.1152/physrev.00002.2003
  49. Meng X, Yue L, Liu A, Tao W, Shi L, Zhao W, Wu Z, Zhang Z, Wang L, Zhang X, Zhou W (2022) Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J Biol Chem 298(8): 102207. https://doi.org/10.1016/j.jbc.2022.102207
  50. Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA (2023) Lipopolysaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berlin) 240(3): 647–671. https://doi.org/10.1007/s00213-023-06308-8
  51. Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Leonardi M, Campieri M (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17(8): 1769–1777. https://doi.org/10.1002/ibd.21549
  52. Fan Y, Bao C, Wei Y, Wu J, Zhao Y, Zeng X, Qin W, Wu H, Liu P (2020) Altered functional connectivity of the amygdala in Crohn's disease. Brain Imaging Behav 14(6): 2097–2106. https://doi.org/10.1007/s11682-019-00159-8
  53. Sun J, Sun W, Yue K, Zhang Y, Wu X, Liu W, Zou L, Shi H (2024) Abnormal Amygdala Subregion Functional Connectivity in Patients with Crohn's Disease with or without Anxiety and Depression. Behav Neurol 2024: 1551807. https://doi.org/10.1155/2024/1551807
  54. Aziz MNM, Kumar J, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM (2021) Irritable Bowel Syndrome, Depression, and Neurodegeneration: A Bidirectional Communication from Gut to Brain. Nutrients 13(9): 3061. https://doi.org/10.3390/nu13093061
  55. Hong JY, Kilpatrick LA, Labus J, Gupta A, Jiang Z, Ashe-McNalley C, Stains J, Heendeniya N, Ebrat B, Smith S, Tillisch K, Naliboff B, Mayer EA (2013) Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. J Neurosci 33(29): 11994-12002. https://doi.org/10.1523/JNEUROSCI.5733-12.2013
  56. Qi R, Liu C, Ke J, Xu Q, Ye Y, Jia L, Wang F, Zhang LJ, Lu GM (2016) Abnormal Amygdala Resting-State Functional Connectivity in Irritable Bowel Syndrome. AJNR Am J Neuroradiol 37(6): 1139-1145. https://doi.org/10.3174/ajnr.A4655
  57. Azarfarin M, Moradikor N, Matin S, Dadkhah M (2024) Association Between Stress, Neuroinflammation, and Irritable Bowel Syndrome: The Positive Effects of Probiotic Therapy. Cell Biochem Funct 42(8): e70009. https://doi.org/10.1002/cbf.70009
  58. Chang L (2011) The role of stress on physiologic responses and clinical symptoms in irritable bowel syndrome. Gastroenterology 140(3): 761–765. https://doi.org/10.1053/j.gastro.2011.01.032
  59. Mackay JP, Bompolaki M, DeJoseph MR, Michaelson SD, Urban JH, Colmers WF (2019) NPY Y2 Receptors Reduce Tonic Action Potential-Independent GABAB Currents in the Basolateral Amygdala. J Neurosci 39(25): 4909–4930. https://doi.org/10.1523/JNEUROSCI.2226-18.2019
  60. Meis S, Endres T, Lessmann V (2020) Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 382(1): 161–172. https://doi.org/10.1007/s00441-020-03260-3
  61. Berens S, Schaefert R, Baumeister D, Gauss A, Eich W, Tesarz J (2019) Does symptom activity explain psychological differences in patients with irritable bowel syndrome and inflammatory bowel disease? Results from a multi-center cross-sectional study. J Psychosom Res 126: 109836. https://doi.org/10.1016/j.jpsychores.2019.109836
  62. Geng Q, Zhang QE, Wang F, Zheng W, Ng CH, Ungvari GS, Wang G, Xiang YT (2018) Comparison of comorbid depression between irritable bowel syndrome and inflammatory bowel disease: A meta-analysis of comparative studies. J Affect Disord 237: 37–46. https://doi.org/10.1016/j.jad.2018.04.111
  63. Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142: 183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013
  64. Lyubashina OA, Sivachenko IB, Mikhalkin AA (2022) Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 182: 12–25. https://doi.org/10.1016/j.brainresbull.2022.02.002
  65. Сушкевич БМ, Сиваченко ИБ, Любашина ОА (2023) Постколитные перестройки в ноцицептивных свойствах нейронов большого и дорсального ядер шва крысы. Журн эвол биохим физиол 59(4): 293–310.
  66. Unal G, Pare JE, Smith Y, Pare D (2014) Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol 522(8): 1915–1928. https://doi.org/10.1002/cne.23511
  67. Pinard CR, Mascagni F, McDonald AJ (2012) Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience 205: 112–124. https://doi.org/10.1016/j.neuroscience.2011.12.036
  68. Strobel C, Marek R, Gooch HM, Sullivan RKP, Sah P (2015) Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala. Cell Rep 10(9): 1435–1442. https://doi.org/10.1016/j.celrep.2015.02.008
  69. Bienvenu TC, Busti D, Micklem BR, Mansouri M, Magill PJ, Ferraguti F, Capogna M (2015) Large intercalated neurons of amygdala relay noxious sensory information. J Neurosci 35(5): 2044–2057. https://doi.org/10.1523/JNEUROSCI.1323-14.2015
  70. Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, Li XW, Yang JM, Gao TM (2021) Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 131(14): e145692. https://doi.org/10.1172/JCI145692

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».